




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章第一节集合第二课时教学分析课本从学生熟悉的集合(自然数的集合、有理数的集合等)出发,通过类比实数间的大小关系引入集合间的关系,同时,结合相关内容介绍子集等概念在安排这部分内容时,课本注重体现逻辑思考的方法,如类比等值得注意的问题:在集合间的关系教学中,建议重视使用Venn图,这有助于学生通过体会直观图示来理解抽象概念;随着学习的深入,集合符号越来越多,建议教学时引导学生区分一些容易混淆的关系和符号,例如与的区别三维目标1理解集合之间包含与相等的含义,能识别给定集合的子集,能判断给定集合间的关系,提高利用类比发现新结论的能力2在具体情境中,了解空集的含义,掌握并能使用Venn图表达集合的关系,加强学生从具体到抽象的思维能力,树立数形结合的思想重点难点教学重点:理解集合间包含与相等的含义教学难点:理解空集的含义课时安排1课时导入新课思路1.实数有相等、大小关系,如55,53等等,类比实数之间的关系,你会想到集合之间有什么关系呢?(让学生自由发言,教师不要急于作出判断,而是继续引导学生)欲知谁正确,让我们一起来观察、研探思路2.复习元素与集合的关系属于与不属于的关系,填空:(1)0_N;(2)_Q;(3)1.5_R.类比实数的大小关系,如57,22,试想集合间是否有类似的“大小”关系呢?(答案:(1);(2);(3)推进新课(1)观察下面几个例子:A=1,2,3,B=1,2,3,4,5设A为国兴中学高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的集合;设Cx|x是两条边相等的三角形,Dx|x是等腰三角形;E2,4,6,F6,4,2你能发现两个集合间有什么关系吗?(2)例子中集合A是集合B的子集,例子中集合E是集合F的子集,同样是子集,有什么区别?(3)结合例子,类比实数中的结论:“若ab,且ba,则ab”,在集合中,你发现了什么结论?(4)升国旗时,每个班的同学都聚集在一起站在旗杆附近指定的区域内,从楼顶向下看,每位同学是哪个班的,一目了然试想一下,根据从楼顶向下看到的,要想直观表示集合,联想集合还能用什么表示?(5)试用Venn图表示例子中集合A和集合B.(6)已知AB,试用Venn图表示集合A和B的关系(7)任何方程的解都能组成集合,那么x210的实数根也能组成集合,你能用Venn图表示这个集合吗?(8)一座房子内没有任何东西,我们称为这座房子是空房子,那么一个集合没有任何元素,应该如何命名呢?(9)与实数中的结论“若ab,且bc,则ac”相类比,在集合中,你能得出什么结论?活动:教师从以下方面引导学生:(1)观察两个集合间元素的特点(2)从它们含有的元素间的关系来考虑规定:如果AB,但存在xB,且xA,我们称集合A是集合B的真子集,记作AB(或BA)(3)实数中的“”类比集合中的.(4)把指定位置看成是由封闭曲线围成的,学生看成集合中的元素,从楼顶看到的就是把集合中的元素放在封闭曲线内教师指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn图(5)封闭曲线可以是矩形也可以是椭圆等等,没有限制(6)分类讨论:当AB时,AB或AB.(7)方程x210没有实数解(8)空集记为,并规定:空集是任何集合的子集,即A;空集是任何非空集合的真子集,即A(A)(9)类比子集讨论结果:(1)集合A中的元素都在集合B中;集合A中的元素都在集合B中;集合C中的元素都在集合D中;集合E中的元素都在集合F中可以发现:对于任意两个集合A,B有下列关系:集合A中的元素都在集合B中;或集合B中的元素都在集合A中(2)例子中AB,但有一个元素4B,且4A;而例子中集合E和集合F中的元素完全相同(3)若AB,且BA,则AB.(4)可以把集合中元素写在一个封闭曲线的内部来表示集合(5)如图1所示表示集合A,如图2所示表示集合B. 图1 图2(6)如图3和图4所示 图3 图4(7)不能因为方程x210没有实数解(8)空集(9)若AB,BC,则AC;若AB,BC,则AC.思路1例1 某工厂生产的产品在重量和长度上都合格时,该产品才合格若用A表示合格产品的集合,B表示重量合格的产品的集合,C表示长度合格的产品的集合已知集合A,B,C均不是空集(1)则下列包含关系哪些成立?AB,BA,AC,CA.(2)试用Venn图表示集合A,B,C间的关系活动:学生思考集合间的关系以及Venn图的表示形式当集合A中的元素都属于集合B时,则AB成立,否则AB不成立用相同的方法判断其他包含关系是否成立教师提示学生注意以下两点:(1)重量合格的产品不一定是合格产品,但合格的产品一定重量合格;长度合格的产品不一定是合格产品,但合格的产品一定长度合格(2)根据集合A,B,C间的关系来画出Venn图解:(1)包含关系成立的有:AB,AC.(2)集合A,B,C间的关系用Venn图表示,如图5所示图5变式训练 课本本节练习,3. 点评:本题主要考查集合间的包含关系其关键是首先明确两集合中的元素具体是什么 判断两个集合A,B之间是否有包含关系的步骤是:先明确集合A,B中的元素,再分析集合A,B中的元素之间的关系,得:集合A中的元素都属于集合B时,有AB;当集合A中的元素都属于集合B,集合B中至少有一个元素不属于集合A时,有AB;当集合A中的元素都属于集合B,并且集合B中的元素也都属于集合A时,有AB;当集合A中至少有一个元素不属于集合B,并且集合B中至少有一个元素也不属于集合A时,有AB,且BA,即集合A,B互不包含.例2 写出集合a,b的所有子集,并指出哪些是它的真子集活动:学生思考子集和真子集的定义,教师提示学生空集是任何集合的子集,一个集合不是其本身的真子集按集合a,b的子集所含元素的个数分类讨论解:集合a,b的所有子集为,a,b,a,b真子集为,a,b.变式训练已知集合P1,2,那么满足QP的集合Q的个数是()A4B3C2D1解析:集合P1,2含有2个元素,其子集有224个,又集合QP,所以集合Q有4个答案:A 点评:本题主要考查子集和真子集的概念,以及分类讨论的思想通常按子集中所含元素的个数来写出一个集合的所有子集,这样可以避免重复和遗漏思考:集合A中含有n个元素,那么集合A有多少个子集?多少个真子集?解:当n0时,即空集的子集为,即子集的个数是120;当n1时,即含有一个元素的集合如a的子集为,a,即子集的个数是221;当n2时,即含有一个元素的集合如a,b的子集为,a,b,a,b,即子集的个数是422. 集合A中含有n个元素,那么集合A有2n个子集,由于一个集合不是其本身的真子集,所以集合A有(2n1)个真子集.思路2例1 已知集合A1,3,2m1,集合B3,m2若BA,则实数m_.活动:先让学生思考BA的含义,根据BA,知集合B中的元素都属于集合A,由集合元素的互异性,列出方程求实数m的值因为BA,所以3A,m2A.对m2的值分类讨论解析:BA,3A,m2A.m21(舍去)或m22m1.解得m1.m1.答案:1点评:本题主要考查集合和子集的概念,以及集合元素的互异性本题容易出现m23,其原因是忽视了集合元素的互异性避免此类错误的方法是解得m的值后,再代入验证讨论两集合之间的关系时,通常依据相关的定义,观察这两个集合元素的关系,转化为解方程或解不等式.变式训练已知集合Mx|2x2,由于NM,则N或N,要对集合N是否为空集分类讨论 解:由题意得Mx|x2,则N或N.当N时,关于x的方程ax1无解,则有a0;当N时,关于x的方程ax1有解,则a0,此时x,又NM,M.2.0a.综上所得,实数a的取值范围是a0或0a,即实数a的取值范围是a|0a.例2 (1)分别写出下列集合的子集及其个数:,a,a,b,a,b,c(2)由(1)你发现集合M中含有n个元素,则集合M有多少个子集?活动:学生思考子集的含义,并试着写出子集(1)按子集中所含元素的个数分类写出子集;(2)由(1)总结当n0,n1,n2,n3时子集的个数规律,归纳猜想出结论解:(1)的子集有:,即有1个子集;a的子集有:,a,即a有2个子集;a,b的子集有:,a,b,a,b,即a,b有4个子集;a,b,c的子集有:,a,b,c,a,b,a,c,b,c,a,b,c,即a,b,c有8个子集(2)由(1)可得:当n0时,有120个子集;当n1时,集合M有221个子集;当n2时,集合M有422个子集;当n3时,集合M有823个子集;因此含有n个元素的集合M有2n个子集.变式训练已知集合A2,3,7,且A中至多有一个奇数,则这样的集合A有()A3个B4个C5个D6个解析:对集合A所含元素的个数分类讨论A或2或3或7或2,3或2,7共有6个答案:D 点评:本题主要考查子集的概念以及分类讨论和归纳推理的能力集合M中含有n个元素,则集合M有2n个子集,有2n1个真子集,记住这个结论,可以提高解题速度写一个集合的子集时,按子集中元素的个数来写不易发生重复和遗漏现象.课本本节练习,1,2.【补充练习】本节课学习了:子集、真子集、空集、Venn图等概念;能判断存在子集关系的两个集合谁是谁的子集,进一步确定其是否是真子集;清楚两个集合包含关系的确定,主要靠其元素与集合关系来说明课本习题1.1,A组,5.本节教学设计注重引导学生通过类比来获得新知,在实际教学中,要留给学生适当的思考时间,使学生自己通过类比得到正确结论丰富学生的学习方式、改进学生的学习方法是高中数学课程追求的基本理念,学生的数学学习活动不能仅限于对概念、结论和技能的记忆、模仿和接受,独立思考、自主探索、合作交流、阅读自学等都应成为学生学习数学的重要方式备选例题【例1】 下面的Venn图中反映的是四边形、梯形、平行四边形、菱形、正方形这五种几何图形之间的关系,问集合A,B,C,D,E分别是哪种图形的集合?图6思路分析:结合Venn图,利用平面几何中梯形、平行四边形、菱形、正方形的定义来确定解:梯形、平行四边形、菱形、正方形都是四边形,故A四边形;梯形不是平行四边形、菱形、正方形,而菱形、正方形是平行四边形,故B梯形,C平行四边形;正方形是菱形,故D菱形,E正方形,即A四边形,B梯形,C平行四边形,D菱形,E正方形【例2】 设集合Ax|x|23|x|20,Bx|(a2)x2,则满足BA的a的值共有()A2个B3个C4个D5个解析:由已知得Ax|x|1或|x|22,1,1,2,集合B是关于x的方程(a2)x2的解集,BA,B或B.当B时,关于x的方程(a2)x2无解,a20.a2.当B时,关于x的方程(a2)x2的解xA,2或1或1或2.解得a1或0或4或3,综上所得,a的值共有5个答案:D【例3】 集合Ax|0x3且xN的真子集的个数是()A16 B8 C7 D4解析:Ax|0x3且xN0,1,2,则A的真子集有2317个答案:C【例4】 已知集合Ax|1x3,Bx|(x1)(xa)0,试判断集合B是不是集合A的子集?是否存在实数a使AB成立?思路分析:先在数轴上表示集合A,然后化简集合B,由集合元素的互异性,可知此时应考虑a的取值是否为1,要使集合B成为集合A的子集,集合B的元素在数轴上的对应点必须在集合A对应的线段上,从而确定字母a的分类标准解:当a1时,B1,所以B是A的子集;当1a3时,B也是A的子集;当a3时,B不是A的子集综上可知,当1a3时,B是A的子集由于集合B最多只有两个元素,而集合A有无数个元素,故不存在实数a,使BA.点评:分类讨论思想,就是科学合理地划分类别,通过“各个击破”,再求整体解决(即先化整为零,再聚零为整)的策略思想类别的划分必须满足互斥、无漏、最简的要求,探索划分的数量界限是分类讨论的关键思考(1)空集中没有元素,怎么还是集合?(2)符号“”和“”有什么区别?剖析:(1)疑点是总是对空集这个概念迷惑不解,并产生怀疑的想法产生这种想法的原因是没有了解建立空集这个概念的背景,其突破方法是通过实例来体会例如,根据集合元素的性质,方程的解能够组成集合,这个集合叫做方程的解集对于0,x240等方程来说,它们的解集中没有元素也就是说确实存在没有任何元素的集合,那么如何用数学符号来刻画没有元素的集合呢?为此引进了空
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版八年级数学下册《17.1勾股定理》同步测试题及答案
- 2025届山东省德州市八校七下数学期末考试模拟试题含解析
- 移动应用开发中的常见问题与解决策略的试题及答案
- 企业合规性与战略风险管理的未来研究试题及答案
- 广东省江门市台山市2025届数学七下期末质量检测模拟试题含解析
- 促进跨部门合作的具体措施计划
- 在线教育平台的技术实现与挑战的试题及答案
- 法学概论考试中的数据保护法律与试题及答案
- 建立平台学校社团平台计划
- 2025年数字转型与公司战略试题及答案
- 畜禽免疫学课件
- 危大工程巡视检查记录
- 暨南学报(哲学社会科学版)投稿之行文格式样本
- 复旦大学《本科生课程论文》封面
- 沪科版八年级数学下册四边形辅助线常用做法
- 重庆市煤矿企业落实安全生产主体责任实施细则考评表
- 《腰段解剖》PPT课件
- 官话套话大全
- 2022年工业废水处理工(中级)理论题库-中(多选题部分)
- 列宁晚年思想及对中国社会主义建设的指导意义
- NY T 1145-2006 温室地基基础设计丶施工与验收技术规范
评论
0/150
提交评论