高中数学课时跟踪检测三应用举例.docx_第1页
高中数学课时跟踪检测三应用举例.docx_第2页
高中数学课时跟踪检测三应用举例.docx_第3页
高中数学课时跟踪检测三应用举例.docx_第4页
高中数学课时跟踪检测三应用举例.docx_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课时跟踪检测(三) 应用举例层级一学业水平达标1.学校体育馆的人字屋架为等腰三角形,如图,测得AC的长度为4 m,A30,则其跨度AB的长为()A12 m B8 mC3 m D4 m解析:选D由题意知,AB30,所以C1803030120,由正弦定理得,即AB4.2一艘船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75距塔68 n mile的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度为()A. n mile/h B34 n mile/hC. n mile/h D34 n mile/h解析:选A如图所示,在PMN中,MN34,v n mile/h.3若某人在点A测得金字塔顶端仰角为30,此人往金字塔方向走了80米到达点B,测得金字塔顶端的仰角为45,则金字塔的高度最接近于(忽略人的身高)()A110米 B112米C220米 D224米解析:选A如图,设CD为金字塔,AB80米设CDh,则由已知得(80h)h,h40(1)109(米)从选项来看110最接近,故选A.4设甲、乙两幢楼相距20 m,从乙楼底望甲楼顶的仰角为60,从甲楼顶望乙楼顶的俯角为30,则甲、乙两幢楼的高分别是()A20 m, m B10 m,20 mC10()m,20 m D. m, m解析:选A由题意,知h甲20tan 6020(m),h乙20tan 6020tan 30(m)5海上的A,B两个小岛相距10 n mile,从A岛望C岛和B岛成60的视角,从B岛望C岛和A岛成75的视角,则B岛与C岛之间的距离是()A10 n mile B. n mileC5 n mile D5 n mile解析:选D由题意,做出示意图,如图,在ABC中,C180607545,由正弦定理,得,解得BC5(n mile)6某人从A处出发,沿北偏东60行走3 km到B处,再沿正东方向行走2 km到C处,则A,C两地的距离为_km.解析:如图所示,由题意可知AB3,BC2,ABC150.由余弦定理,得AC2274232cos 15049,AC7.则A,C两地的距离为7 km.答案:77坡度为45的斜坡长为100 m,现在要把坡度改为30,则坡底要伸长_m.解析:如图,BD100,BDA45,BCA30,设CDx,所以(xDA)tan 30DAtan 45,又DABDcos 4510050,所以xDA5050()m.答案:50()8一蜘蛛沿东北方向爬行x cm捕捉到一只小虫,然后向右转105,爬行10 cm捕捉到另一只小虫,这时它向右转135爬行回它的出发点,那么x_cm.解析:如图所示,设蜘蛛原来在O点,先爬行到A点,再爬行到B点,易知在AOB中,AB10 cm,OAB75,ABO45,则AOB60,由正弦定理知:x(cm)答案:9.如图,甲船以每小时30海里的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于A1处时,乙船位于甲船的北偏西105方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120方向的B2处,此时两船相距10海里,求乙船航行的速度解:如图,连接A1B2,在A1A2B2中,易知A1A2B260,又易求得A1A23010A2B2,A1A2B2为正三角形,A1B210.在A1B1B2中,易知B1A1B245,(B1B2)240020022010200,B1B210,乙船每小时航行30海里10.如图所示,在地面上共线的三点A,B,C处测得一建筑物的仰角分别为30,45,60,且ABBC60 m,求建筑物的高度解:设建筑物的高度为h,由题图知,PA2h,PBh,PCh,在PBA和PBC中,分别由余弦定理,得cosPBA,cosPBC.PBAPBC180,cosPBAcosPBC0.由,解得h30或h30(舍去),即建筑物的高度为30 m.层级二应试能力达标1.如图,从气球A上测得其正前下方的河流两岸B,C的俯角分别为75,30,此时气球的高度AD是60 m,则河流的宽度BC是()A240(1)m B180(1)mC120(1)m D30(1)m解析:选C由题意知,在RtADC中,C30,AD60 m,AC120 m在ABC中,BAC753045,ABC1804530105,由正弦定理,得BC120(1)(m)2.如图所示为起重机装置示意图支杆BC10 m,吊杆AC15 m,吊索AB5 m,起吊的货物与岸的距离AD为()A30 m B. mC15 m D45 m解析:选B在ABC中,AC15 m,AB5 m,BC10 m,由余弦定理得cosACB,sinACB.又ACBACD180,sinACDsinACB.在RtADC中,ADACsinACD15 m.3.如图所示,要测量底部不能到达的某电视塔AB的高度,在塔的同一侧选择C,D两个观测点,且在C,D两点测得塔顶的仰角分别为45,30,在水平面上测得BCD120,C,D两地相距500 m,则电视塔AB的高度是()A100 m B400 mC200 m D500 m解析:选D设ABx,在RtABC中,ACB45,BCABx.在RtABD中,ADB30,BDx.在BCD中,BCD120,CD500 m,由余弦定理得(x)2x250022500xcos 120,解得x500 m.4.如图所示,位于东海某岛的雷达观测站A,发现其北偏东45,与观测站A距离20海里的B处有一货船正匀速直线行驶,半小时后,又测得该货船位于观测站A东偏北(045)的C处,且cos .已知A,C两处的距离为10海里,则该货船的船速为()A4 海里/小时 B3 海里/小时C2 海里/小时 D4 海里/小时解析:选A因为cos ,045,所以sin ,cos(45),在ABC中,BC2(20)210222010340,所以BC2,该货船的船速为4海里/小时5.如图所示,客轮以速度2v由A至B再到C匀速航行,货轮从AC的中点D出发,以速度v沿直线匀速航行,将货物送达客轮已知ABBC,且ABBC50 n mile,若两船同时起航出发,则两船相遇之处距C点_n mile(结果精确到小数点后一位)解析:由题易知两船相遇之处M位于BC上,如图,设|MC|d,则(M位于BC延长线上取“”,M位于BC上取“”),所以(100d)24d2(25)250d,即3d210025 000,所以d2,即d40.8(n mile)答案:40.86甲船在A处观察乙船,乙船在它的北偏东60方向的B处,两船相距a n mile,乙船正向北行驶,若甲船的速度是乙船的倍,则甲船应沿_方向行驶才能追上乙船;追上时甲船行驶了_n mile.解析:如图所示,设在C处甲船追上乙船,乙船到C处用的时间为t,乙船的速度为v,则BCtv,ACtv,又B120,则由正弦定理,得,sinCAB,CAB30,甲船应沿北偏东30方向行驶又ACB1801203030,BCABa n mile,AC a(n mile)答案:北偏东30a7.如图所示,在社会实践中,小明观察一棵桃树他在点A处发现桃树顶端点C的仰角大小为45,往正前方走4 m后,在点B处发现桃树顶端点C的仰角大小为75.(1)求BC的长;(2)若小明身高为1.70 m,求这棵桃树顶端点C离地面的高度(精确到0.01 m,其中1.732)解:(1)在ABC中,CAB45,DBC75,则ACB754530,AB4,由正弦定理得,解得BC4(m)即BC的长为4 m.(2)在CBD中,CDB90,BC4,所以DC4sin 75.因为sin 75sin(4530)sin 45cos 30cos 45sin 30,则DC22.所以CEEDDC1.70223.703.4647.16(m)即这棵桃树顶端点C离地面的高度为7.16 m.8.在某次地震时,震中A(产生震动的中心位置)的南面有三座东西方向的城市B,C,D.已知B,C两市相距20 km,C,D相距34 km,C市在B,D两市之间,如图所示某时刻C市感到地表震动,8 s后B市感到地表震动,20 s后D市感到地表震动,已知震波在地表传播的速度为每秒1.5 km.求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论