高中数学第一讲不等式和绝对值不等式二绝对值不等式第1课时学案新人教选修.docx_第1页
高中数学第一讲不等式和绝对值不等式二绝对值不等式第1课时学案新人教选修.docx_第2页
高中数学第一讲不等式和绝对值不等式二绝对值不等式第1课时学案新人教选修.docx_第3页
高中数学第一讲不等式和绝对值不等式二绝对值不等式第1课时学案新人教选修.docx_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二 绝对值不等式1绝对值三角不等式1理解绝对值的几何意义2掌握绝对值三角不等式及其几何意义3三个实数的绝对值不等式及应用1绝对值的几何意义(1)实数a的绝对值|a|表示数轴上坐标为_的点A到_的距离(2)对于任意两个实数a,b,设它们在数轴上的对应点分别为A,B,那么|ab|的几何意义是数轴上A,B两点之间的_,即线段AB的_(1)|a|(2)对任意实数a,都有|a|.(3)实数积和商的绝对值运算法则:|ab|a|b|,|(b0)2绝对值三角不等式(1)如果a,b是实数,则|ab|a|b|,当且仅当_时,等号成立(2)如果把上面的绝对值三角不等式中的实数a,b换成向量a,b,当向量a,b不共线时,由向量加法的三角形法则,向量ab,a,b构成三角形,因此有向量形式的不等式|ab|a|b|,它的几何意义是_【做一做】 若|xa|h,|ya|k,则下列不等式一定成立的是()A|xy|2h B|xy|2kC|xy|hk D|xy|hk|3三个实数的绝对值不等式如果a,b,c是实数,那么|ac|ab|bc|,当且仅当_时,等号成立答案:1(1)a原点(2)距离长度2(1)ab0(2)三角形两边之和大于第三边【做一做】 C|xy|(xa)(ay)|xa|ay|hk.3(ab)(bc)01对绝对值三角不等式的理解剖析:绝对值三角不等式实质是两个实数的和差的绝对值与绝对值的和差的关系,我们可以类比得到另外一种形式:|a|b|ab|a|b|.和差的绝对值与绝对值的和差的关系是由ab0,ab0,ab0三种情况来确定的,其本质是叙述两个实数符号的各种情形下得到的结果,即这个定理本身就是一个分类讨论问题“数”分正、负、零等不同情况讨论,往往在所难免,因此,对绝对值的认识要有分类讨论的习惯2对绝对值三角不等式几何意义的理解剖析:用向量a,b替换实数a,b时,问题就从一维扩展到二维,当向量a,b不共线时,ab,a,b构成三角形,有|ab|a|b|.当向量a,b共线时,a,b同向(相当于ab0)时,|ab|a|b|;a,b异向(相当于ab0)时,|ab|a|b|,这些都是利用了三角形的性质定理,如两边之和大于第三边等,这样处理,可以形象地描绘绝对值三角不等式,更易于记忆定理,并应用定理解题绝对值三角不等式体现了“放缩法”的一种形式,但放缩的“尺度”还要仔细把握,如下面的式子:|a|b|a|b|ab|a|b|.我们较为常用的形式是|a|b|ab|a|b|,但有些学生就会误认为只能如此,而实质上,|ab|是不小于|a|b|的,|a|b|不一定是正数,当然,这需对绝对值不等式有更深的理解,从而使放缩的“尺度”更为准确题型一 绝对值三角不等式的性质【例1】 若x5,nN,则下列不等式:|xlg|5|lg|;|x|lg5lg;xlg5|lg|;|x|lg5|lg|.其中,能够成立的有_反思:判断一个不等式成立与否,往往是对影响不等号的因素进行分析,如一个数的正、负、零等,数(或式子)的积、平方、取倒数等都对不等号产生影响,注意考查这些因素在不等式中的作用,一个不等式的成立与否也就比较好判断了题型二 用绝对值三角不等式的性质证明不等式【例2】 设m等于|a|,|b|和1中最大的一个,当|x|m时,求证:|2.分析:本题的关键是对题设条件的理解和运用|a|,|b|和1这三个数中哪一个最大?如果两两比较大小,将十分复杂,但我们可以得到一个重要的信息:m|a|,m|b|,m1.反思:分析题目时,题目中的语言文字是我们解题的信息的重要来源与依据,而解题时的数学符号语言也往往需要从文字语言“翻译”转化而来,那么准确理解题目中的文字语言,适时准确地进行转化也就成了解题的关键,如本题中题设条件中的文字语言“m等于|a|,|b|和1中最大的一个”转化为符号语言“m|a|,|m|b|,m1”是证明本题的关键题型三 绝对值三角不等式的综合应用【例3】 已知函数f(x)lg.(1)判断f(x)在1,1上的单调性,并给出证明(2)若tR,求证:lgf(|t|t|)lg .分析:(1)借助定义判别f(x)的单调性;(2)利用绝对值三角不等式解决反思:此类题目综合性强,不仅用到绝对值不等式的性质、推论及已知条件,还要用到配方等等价变形在应用绝对值不等式放缩性质求最值时要注意等号成立的条件,这是关键所在答案:【例1】 01,lg0.由x5,并不能确定|x|与5的关系,可以否定,而|x|lg0,故成立【例2】 证明:|x|m|a|,|x|m|b|,|x|m1,|x|2|b|,|2.|2.故原不等式成立【例3】 解:(1)f(x)在1,1上是减函数证明:令u1.取1x1x21.则u1u2,|x1|1,|x2|1,x1x2,u1u20,即u1u2.由u0,lg u1lg u2,得f(x1)f(x2),f(x)在1,1上是减函数(2)|t|t|(t)(t)|.|t|t|t(t)|,|t|t|.由(1)的结论,有f()f(|t|t|)f()而f()lg ,f()lg,lgf(|t|t|)lg .1设ab0,下面四个不等式|ab|a|;|ab|b|;|ab|ab|;|ab|a|b|中,正确的是()A和 B和C和 D和2已知实数a,b满足ab0,则下列不等式成立的是()A|ab|ab| B|ab|ab|C|ab|a|b| D|ab|a|b|3不等式1成立的充要条件是_4设|a|1,函数f(x)ax2xa(1x1),证明|f(x)|.答案:1Cab0,a,b同号|ab|a|b

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论