




免费预览已结束,剩余3页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2010,高通量测序技术日渐成熟测序在生命科学研究中一直发挥着重要作用。以Sanger法(双脱氧核苷酸末端终止法)为代表的第一代测序技术帮助人们完成了从噬菌体基因组到人类基因组图谱等大量测序工作,但由于其存在成本高、速度慢、通量低等不足,并不是后基因组时代最理想的测序方法。进入21世纪后,以Roche454、Illumina Solexa和ABI SOLiD为代表的第二代测序技术诞生了,并迅速掀起了你追我赶的技术比拼高潮。2010年,Illunima和ABI先后发布新款测序仪,改进了原有机型,测序通量不断提升,测序成本不断降低,现在已经进入了数千美元测一个人全基因组的时代。第二代测序技术进展1.Roche 454测序技术454公司可谓第二代测序技术的奠基者。2005年底,454公司推出了革命性的基于焦磷酸测序法的高通量基因组测序系统-Genome Sequencer 20 System。这一技术的建立开创了边合成边测序(sequencing by synthesis)的先河,被nature杂志以里程碑事件报道。之后,454公司被罗氏诊断公司以1.55亿美元收购。一年后,他们又推出了性能更优的第二代基因组测序系统-Genome Sequencer FLX System(GS FLX)。2008年10月,Roche 454在不改变机器的情况下,推出了全新的测序试剂-GS FLX Titanium,全面提升了测序的准确性、读长和测序通量。目前,Roche 454 GS FLX Titanium每次运行能产生100万条序列,平均读长能达到400nt,且第400个碱基的准确率能达到99%。一次运行所需时间为10小时,能获得4-6亿个碱基的序列信息。2.Illumina Solexa测序技术Illumina公司的第二代测序仪最早由Solexa公司研发,利用其专利核心技术DNA簇和可逆性末端终结(reversible terminator),实现自动化样本制备和大规模并行测序。Illumina公司于2007年初花费6亿美金巨资收购了Solexa。2010年初,Illumina将其第二代测序仪Genome Analyzer IIx升级到HiSeq 2000。HiSeq 2000含有两张Flow cell,可同时运行或者只运行其中一张。读长为100nt,同时支持Fragment、Pair-end和Mate-Paired文库。每次运行最多可产生200 GB的数据量(读长为2x100nt)。Solexa测序技术路线:3.ABI SOLiD测序技术过去20年,美国应用生物系统公司(ABI)在一代测序方面一直占据着垄断地位。第二代测序技术出现以来,ABI公司不甘落后,迅速赶上,于2007年底推出了SOLiD 第二代测序平台。2010年末又发布了最新产品-SOLiD 5500xl测序平台。从SOLiD到如今的SOLiD 5500xl,短短三年时间,连升五级,发展速度惊人。SOLiD全称为Supported Oligo Ligation Detetion,它的独特之处在于它以四色荧光标记寡核苷酸的连续连接反应为基础,而没有采用传统的边合成边测序技术。连接反应没有DNA聚合酶合成过程中常有的错配问题,而SOLiD特有的双色球编码技术又提供了一个纠错机制,这样设计上的优势使得SOLiD在系统准确性上大大领先于其它平台。目前最新款SOLiD 5500xl含有两张微流体芯片(microfluidic FlowChip),每张芯片含有6条相互独立的运行通道(run lane)。每条lane都能运行相对独立的测序反应,这样的设计使得SOLiD 5500xl测序平台极具灵活性。最大测序读长为75nt,同样支持Fragment、Pair-end和Mate-Paired文库。单次运行能得到的最大数据量为300Gb(使用最新设计的nanobeads)。测序的系统准确性能达到99.99%。SOLiD测序技术路线:第二代测序技术的应用技术推进科学研究的发展。随着第二代测序技术的迅猛发展,科学界也开始越来越多地应用第二代测序技术来解决生物学问题。比如在基因组水平上对还没有参考序列的物种进行重头测序(de novo sequencing),获得该物种的参考序列,为后续研究和分子育种奠定基础;对有参考序列的物种,进行全基因组重测序(resequencing),在全基因组水平上扫描并检测突变位点,发现个体差异的分子基础。在转录组水平上进行全转录组测序(whole transcriptome resequencing),从而开展可变剪接、编码序列单核苷酸多态性(cSNP)等研究;或者进行小分子RNA测序(small RNA sequencing),通过分离特定大小的RNA分子进行测序,从而发现新的microRNA分子。在转录组水平上,与染色质免疫共沉淀(ChIP)和甲基化DNA免疫共沉淀(MeDIP)技术相结合,从而检测出与特定转录因子结合的DNA区域和基因组上的甲基化位点。这边需要特别指出的是第二代测序结合微阵列技术而衍生出来的应用-目标序列捕获测序技术(Targeted Resequencing)。这项技术首先利用微阵列技术合成大量寡核苷酸探针,这些寡核苷酸探针能够与基因组上的特定区域互补结合,从而富集到特定区段,然后用第二代测序技术对这些区段进行测序。目前提供序列捕获的厂家有Agilent和Nimblegen ,应用最多的是人全外显子组捕获测序。科学家们目前认为外显子组测序比全基因组重测序更有优势,不仅仅是费用较低,更是因为外显子组测序的数据分析计算量较小,与生物学表型结合更为直接。目前,外显子组测序开始广泛应用于寻找疾病的候选基因上。内梅亨大学的研究人员使用这种方法鉴定出Schinzel-Giedion 综合征中的致病突变,Schinzel-Giedion综合征是一种导致严重的智力缺陷、肿瘤高发以及多种先天性畸形的罕见病。他们使用Agilent SureSelect序列捕获和SOLiD对四位患者的外显子组进行测序,平均覆盖度为43倍,读长为50 nt,每个个体产生了2.7-3 GB可作图的序列数据。他们聚焦于全部四位患者都携带变异体的12个基因,最终将候选基因缩小至1个。而贝勒医学院基因组测序中心也计划对15种以上疾病进行研究,包括脑癌、肝癌、胰腺癌、结肠癌、卵巢癌、膀胱癌、心脏病、糖尿病、自闭症以及其他遗传疾病,以更好地理解致病突变以及突变对疾病的影响。前不久刚刚结束的Science杂志年度十大科学突破评选中,外显子组测序名列其中。以上我们盘点了2010年第二代测序技术的最新进展和相关应用。但是除了第二代测序之外,还有另外一种以单分子实时测序和纳米孔为标志的第三代测序技术也正在如火如荼的发展中,只是还没有正式发布。所以目前科学界所说的高通量测序还指的是第二代测序。第三代测序技术简介第二代测序技术在制备测序文库的时候都需要经过PCR扩增,而这一PCR过程可能引入突变或者改变样品中核酸分子的比例关系。另外,第二代测序的读长普遍偏短,在进行数据拼接时会遇到麻烦。为了克服这样的缺点,业界发展出了以单分子实时测序和纳米孔为标志的第三代测序技术。简介如下:1.Helicos公司Helicos公司的Heliscope单分子测序仪基于边合成边测序的思想,将待测序列随机打断成小片段并在3末端加上Poly(A),用末端转移酶在接头末端加上Cy3荧光标记。用小片段与表面带有寡聚Poly(T)的平板杂交。然后,加入DNA聚合酶和Cy5荧光标记的dNTP进行DNA合成反应,每一轮反应加一种dNTP。将未参与合成的dNTP和DNA聚合酶洗脱,检测上一步记录的杂交位置上是否有荧光信号,如果有则说明该位置上结合了所加入的这种dNTP。用化学试剂去掉荧光标记,以便进行下一轮反应。经过不断地重复合成、洗脱、成像、淬灭过程完成测序。Heliscope的读取长度约为30-35 nt,每个循环的数据产出量为21-28 Gb。2.Pacific Biosciences公司Pacific Biosciences公司的SMRT技术基于边合成边测序的思想,以SMRT芯片为测序载体进行测序反应。SMRT芯片是一种带有很多ZMW(zero-mode waveguides)孔的厚度为100 nm的金属片。将DNA聚合酶、待测序列和不同荧光标记的dNTP放入ZMW孔的底部,进行合成反应。与其他技术不同的是,荧光标记的位置是磷酸基团而不是碱基。当一个dNTP被添加到合成链上的同时,它会进入ZMW孔的荧光信号检测区并在激光束的激发下发出荧光,根据荧光的种类就可以判定dNTP的种类。此外由于dNTP在荧光信号检测区停留的时间(毫秒级)与它进入和离开的时间( 微秒级) 相比会很长,所以信号强度会很大。其它未参与合成的dNTP由于没进入荧光型号检测区而不会发出荧光。在下一个dNTP被添加到合成链之前,这个dNTP的磷酸基团会被氟聚合物(fluoropolymer)切割并释放,荧光分子离开荧光信号检测区。3.Oxford Nanopore Technologies公司Oxford Nanopore Technologies公司正在研究的纳米孔单分子技术是一种基于电信号测序的技术。他们设计了一种以-溶血素为材料制作的纳米孔,在孔内共价结合有分子接头环糊精。用核酸外切酶切割ssDNA时,被切下来的单个碱基会落入纳米孔,并和纳米孔内的环糊精相互作用,短暂地影响流过纳米孔的电流强度,这种电流强度的变化幅度就成为每种碱基的特征。总结与展望三代测序技术的原理各有特点,适用范围也不近相同。第一代测序技术凭借其长的序列片段和高的准确率,适合对新物种进行基因组长距框架的搭建以及后期GAP填补,但是成本昂贵,而且难以胜任微量DNA样品的测序工作。第二代测序技术中,454序列片段最长,比较适合对未知基因组从头测序,搭建主体结构,但是在判断连续单碱基重复区时准确度不高。Solexa较454具有通量高、片段短、价位低的特点,可以用于大基因组和小基因组的测序和重测序。Solexa双末端测序(paired-end sequencing)可以为基因组进一步拼接提供定位信息,但是随着反应轮数增加,序列长度和质量均有所下降,而且在阅读AT区时有明显错误倾向。SOLiD基于双碱基编码系统的纠错能力以及较高的测序通量,适合转录本研究以及比较基因组学特别是SNP检测等,但是测序的片段短限制了该技术在基因组拼接中的广泛应用。第三代测序技术目前正在研发阶段,尚未正式投入使用。在实际应用中,多种测序平台的结合可以得到更好的效果。比如由于各种测序技术的错误分布并不相同,我们可以采用两种测序方法相互印证,可以解决单一测序方法无法验证SNP正确性的弊端。2010年是高通量测序技术日渐成熟的一年,虽然尚未诞生具有革命性的测序仪,但是测序仪的性能不断改进,其同样意义重大。2006年底,美国X大奖基金会设立了基因组Archon X大奖,奖金高达1000万美元。这项大奖将颁给第一个能在10天之内,用不到100万美元的费用,完成100个人类基因组测序的民间团队。照现在的发展趋势来看,基因组Archon X大奖很快就会颁发出去了。虽然测序技术越来越成熟,成本也越来越低,但是大量的数据存储和分析是紧接着的又一个挑战;而且,现在我们所能解释的生物学现象和机制还很有限,即使获得了基因组信息,如何去解释和应用它,仍是个长远的问题。这些问题都需要大家一起努力,共同探讨,拓展高通量测序的应用领域。Nature子刊:新一代DNA测序技术原理获证实接二连三的个人基因组图谱绘制陆续完成,说明了第二代测序技术的强大力量,但是第二代测序技术很快就遇上了强劲的对手第三代测序技术,也就是被称 为下下一代的测序(next-next-generation sequencing)的直接测序方法。这一测序技术是基于纳米孔(nanopore)的单分子读取技术,不同于之前的两代技术(需要荧光或者化学发光物 质的协助下, 通过读取DNA聚合酶或DNA连接酶将碱基连接到DNA链上过程中释放出的光学信号而间接确定的),可以直接读取序列信息,简洁快速。 第一代测序技术是双脱氧链末端终止法根据核苷酸在某一固定的点开始,随机在某一个特定的碱基处终止,产生A,T,C,G四组不同长度的一系列核 苷酸,然后在尿素变性的PAGE胶上电泳进行检测,从而获得DNA序列。第二代测序技术是焦磷酸测序法由4种酶催化的同一反应体系中的酶级联化学发光 反应,适于对已知的短序列的测序分析。而第三代测序技术则是基于纳米孔的单分子读取技术,这种方法读取数据更快、有望大大降低测序成本,改变个人医疗的前 景。这一技术的研发是系统工程,涉及生物、半导体、计算机、化学、光学等多个领域,需要不同学科顶尖力量的合作。 虽然目前已知第三代测序技术的基本原理是在纳米孔中配置纳米电极,用电 测方法测量一个DNA的核酸碱基排列。但是电测识别一个分子的技术开发极其困难,因此尚未有验证该原理的实例。 近期来自日本大阪大学产业科学研究所纳米技术中心的研究人员利用大约只有1纳米的超短距离的电极,成功地测量出构成DNA的1个核酸碱基分子中流动 的电流。这种电测方法是下一代DNA测序基本原理在世界上首次验证成功。这一研究成果公布在Nature Nanotechnology杂志上。 领导这一研究的是大阪大学的Kazumichi Yokota博士和Tomoji Kawai研究员,这项研究是科学技术振兴机构实施的“战略创造研究推进事业”中的个人型研究课题自我组织化线路的超高集成分子设备的创制的一部分。 DNA测序在个人医疗、精确搜查罪犯、超高速检验病毒等领域起着巨大作用,然而目前的两代测序方法,测序序列都是在荧光或者化学发光物质的协助下, 通过读取DNA聚合酶或DNA连接酶将碱基连接到DNA链上过程中释放出的光学信号而间接确定的,除了需要昂贵的光学监测系统, 还要记录、存储并分析大量的光学图像,这都使仪器的复杂性和成本增加,依赖生物化学反应读取碱基序列更增加了试剂、耗材的使用。 要获得更加迅速、高精度的检验,就需要开发超高速低成本的DNA测序方法,第三代测序技术应运而生,纳米孔技术不需要荧光标记物并且很可能不需要进 行扩增,能直接并快速“读”出DNA,同时足够廉价,使进行大量重复实验成为可能。目前一些公司已经研发出包含几百个纳米孔的芯片,可以用在一台机器上, 快速且廉价地给大量DNA进行排序。比如去年Complete Genomics公司就公布了三个利用这一技术完成的基因组测序(具体见专访Radoje Drmanac:5000元测序的奥秘)。 在这篇文章中,研究人员利用纳米加工技术制作电极间距为1纳米的电极,这种方法能在纳米电极间以0.01纳米的精度进行控制。随后将核酸碱基的一个 分子夹在电极之间,通电后经过测定发现有三个核酸碱基分子显示异常电流值,证明通过电测可识别一个分子单位的核酸碱基分子种类。这种电测方法是下一代 DNA测序基本原理在世界上首次验证成功。 研究人员将纳米电极放入溶解在水溶液中的构成DNA要素的4个核酸碱基分子,即腺嘌呤、鸟嘌 呤、胞嘧啶和胸腺嘧啶。在测定电极间的电流时间变化时发现,除腺嘌呤之外的3个核酸碱基分子各有不同的电流值,根据电流值的不同,可识别出不同的核酸碱基 分子。在两个核酸碱基分子等量混合时进行测定,可观测到两个核酸碱基分子的特征性电流峰值,验证了可根据电流值识别相应的核酸碱基分子。 纳米孔就是直径在纳米尺度的小孔(12 nm),通常是利用固态物质或者生物分子制成的小孔,这种想法是在电场驱动下,当线状DNA分子通过小孔时,通过一些物理手段来确定碱基的序列。但是这种 技术也有以些关键问题需要解决,比如区分4种核苷酸的速度要与DNA运动的速度相称;控制DNA通过纳米孔的速度。 计算和实验表明, 仅仅测量通过纳米孔离子电导率是不可能提供识别DNA分子中每个核苷酸所需要的分辨率,纳米孔通道长度通常为5nm, 可以容纳十多个碱基, 这一尺寸对于测序所需要的分辨单个碱基引起的电流变化过长,尽管离子电流测量还不能区分单个碱基, 但其可以很容易地辨别单链与双链DNA。 NABsys公司与 Brown大学的一个团队合作, 利用这一性能来开发一种杂交测序法杂交辅助的纳米孔测序方法(hybridization assisted nanopore sequencing, HANS),将基因组 DNA 随机切割成大约100 kb左右的片段,制成单链并与六寡聚核苷酸探针杂交,然后驱动结合了探针的基因组文库片段通过可寻址的纳米孔阵列,通过每个孔的离子电流均可独立测量,追 踪电流的变化确定探针杂交在每个基因组片段上的精确位置,利用基因组片段上杂交探针的重叠区域将基因组片段文库排列起来, 建立一组完整的基因组探针图,利用计算机算法, 获得完整的基因组序列。 Complete Genomics公司的技术则采用了复合探针-锚定分子连接(Combinatorial probe anchor ligation,cPAL)化学试剂,以及预制基因组DNA纳米芯片,后者能提高成像效率,降低成本。具体而言:1)预制(准确的框架)基因组DNA纳 米芯片缩小了所需试剂容量,并且能加快成像每次成像能捕捉到更多的DNA点;2)新颖的试剂(复合探针-锚定分子连接)能对70个DNA碱基对进行单 独序列阅读每个碱基对的阅读都是完全独立的,这种序列阅读利用的是低浓度低成本试剂。测序技术步骤(见下图)包括:1.样品准备和文库构建;2.DNA芯片分析;3.成像,组装和分析;4.复合探针-锚定分子连接(Combinatorial probe - anchor ligation,cPAL)。 下一代DNA测序技术也许能获得飞跃性的发展,改变电极间距离从纳米至微米变化,可对病毒及过敏原等各种尺寸的分子粒子进行超高感度、超高速度检 测。当然目前第三代基因测序技术竞争也很激烈,美国宣称要在2012年推出成熟的第三代基因测序仪,日本和欧洲也有相关的研发计划。我国也有这方面的计 划,中科院北京基因组研究所是国内权威的基因组学研究机构,他们已和浪潮集团成立了“中科院北京基因组研究所浪潮基因组科学联合实验室”,这一实验室将 研发国产第三代基因测序仪,第一台样机预计2013年问世。高通量测序技术第二代测序技术发布时间: 2009-5-13 浏览次数: 4680 次高通量测序技术是对传统测序一次革命性的改变,一次对几十万到几百万条DNA分子进行序列测定,因此在有些文献中称其为下一代测序技术(next generation sequencing)足见其划时代的改变,同时高通量测序使得对一个物种的转录组和基因组进行细致全貌的分析成为可能,所以又被称为深度测序(deep sequencing)。自从2005年454LifeSciences公司(2007年该公司被Roche正式收购)推出了454FLX焦磷酸测序平台(454FLXpyrosequencingplatform)以来,曾推出过3730xlDNA测序仪(3730xlDNAAnalyzer)的Applied BioSystem(ABI)这家一直占据着测序市场最大份额的公司的领先地位就开始动摇了,因为他们的拳头产品毛细管阵列电泳测序仪系列(seriescapillaryarrayelectrophoresissequencingmachines)遇到了两个强有力的竞争对手,一个就是罗氏公司(Roche)的454测序仪(Roch GS FLX sequencer),另一个就是2006年美国Illumina公司推出的Solexa基因组分析平台(GenomeAnalyzer platform),为此,2007年ABI公司推出了自主研发的SOLiD测序仪(ABI SOLiD sequencer)。这三个测序平台即为目前高通量测序平台的代表。(见表一)表一:主流测序平台一览公司名称技术原理技术开发者商业模式Apply Biosystems(ABI)基于磁珠的大规模并行克隆连接DNA测序法美国Agencourt私人基因组学公司(APG)上市公司:销售设备和试剂获取利润Illumina合成测序法英国Solexa公司首席科学家David Bentley上市公司:销售设备和试剂获取利润Roche大规模并行焦磷酸合成测序法美国454 Life Sciences公司的创始人Jonathan Rothberg上市公司:销售设备和试剂获取利润Helicos大规模并行单分子合成测序法美国斯坦福大学生物工程学家Stephen Quake上市公司:2007年5月首次公开募股(IPO)Complete GenomicsDNA纳米阵列与组合探针锚定连接测序法美国Complete Genomics公司首席科学家radoje drmanac私人公司:投资额为4650万美元这些平台共同的特点是极高的测序通量,相对于传统测序的96道毛细管测序,高通量测序一次实验可以读取40万到400万条序列。读取长度根据平台不同从25bp到450bp,不同的测序平台在一次实验中,可以读取1G到14G不等的碱基数,这样庞大的测序能力是传统测序仪所不能比拟的。尽管如此,在这项新的划时代的测序技术刚出现的时候,科学界对这项新技术却并不热衷。许多习惯用桑格技术的科学家怀疑新技术的准确度、阅读能力、成本消费、实用性。代理Sanger型测序硬件的经销商害怕其投资失败而首先提出了这些怀疑。图一:在芯片上进行的测序:Illumina测序平台然而大多数人却忽略了一个事实,即桑格技术的普及最初也遇到同样的阻碍。桑格技术刚开发出来时,阅读能力很难超过25bp,即使在Fred Sanger双脱氧终止法发明后也只达到80bp,如今却达到了750bp;而新发展的合成测序技术,应用焦磷酸测序方法,其阅读能力最初只有100bp,推向市场16个月后增加至250bp,随着技术的不断完善,目前已达到了400bp,很快就接近桑格技术目前的水平。除了阅读能力外,能否以有限的成本用一台仪器产生足够数量的序列标记也是另一个需要改善的重要问题。这个问题已经被Roche公司解决了,应用他们的系统,仅花费阅读35bp或者更小片段的成本就能产生比35bp多10倍的序列标记。图二:GS FLX 高通量测序方法原理示意图一、高通量测序的应用高通量测序可以帮助研究者跨过文库构建这一实验步骤,避免了亚克隆过程中引入的偏差。依靠后期强大的生物信息学分析能力,对照一个参比基因组(reference genome)高通量测序技术可以非常轻松完成基因组重测序(re-sequence),2007年van Orsouw等人结合改进的AFLP技术和454测序技术对玉米基因组进行了重测序,该重测序实验发现的超过75%的SNP位点能够用SNPWave技术验证,提供了一条对复杂基因组特别是含有高度重复序列的植物基因组进行多态性分析的技术路线。2008年Hillier对线虫CB4858品系进行Solexa重测序,寻找线虫基因组中的SNP位点和单位点的缺失或扩增。但是也应该看到,由于高通量测序读取长度的限制,使其在对未知基因组进行从头测序(novosequencing)的应用受到限制,这部分工作仍然需要传统测序(读取长度达到850碱基)的协助。但是这并不影响高通量测序技术在全基因组mRNA表达谱,microRNA表达谱,ChIP-chip以及DNA甲基化等方面的应用。2008年Mortazavi等人对小鼠的大脑、肝脏和骨骼肌进行了RNA深度测序,这项工作展示了深度测序在转录组研究上的两大进展,表达计数和序列分析。对测得的每条序列进行计数获得每个特定转录本的表达量,是一种数码化的表达谱检测,能检测到丰度非常低的转录本。分析测得的序列,有大于90%的数据显示落在已知的外显子中,而那些在已知序列之外的信息通过数据分析展示的是从未被报道过的RNA剪切形式,3端非翻译区,变动的启动子区域以及潜在的小RNA前体,发现至少有3500个基因拥有不止一种剪切形式。而这些信息无论使用芯片技术还是SAGE文库测序都是无法被发现的。高通量测序另一个被广泛应用的领域是小分子RNA或非编码RNA(ncRNA)研究。测序方法能轻易的解决芯片技术在检测小分子时遇到的技术难题(短序列,高度同源),而且小分子RNA的短序列正好配合了高通量测序的长度,使得数据“不浪费”,同时测序方法还能在实验中发现新的小分子RNA。在衣藻、斑马鱼、果蝇、线虫、人和黑猩猩中都已经成功地找到了新的小分子RNA。在线虫中获得了40万个序列,通过分析发现了18个新的小RNA分子和一类全新的小分子RNA。在DNA蛋白质相互作用的研究上,染色质免疫沉淀深度测序(ChIP-seq)实验也展示了其非常大的潜力。染色质免疫沉淀以后的DNA直接进行测序,对比ref seq可以直接获得蛋白与DNA结合的位点信息,相比ChIP-chip,ChIP-seq可以检测更小的结合区段、未知的结合位点、结合位点内的突变情况和蛋白亲合力较低的区段。二、高通量测序的前景目前,大多分析家都无法相信新一代测序技术能完全取代目前的芯片测序技术。不过,有些分析家也的确认为芯片测序技术正面临着挑战,他们认为到了2012年新一代的测序技术将会带来高达2。15亿美元的产值。2006年,整个芯片测序市场大概价值8亿美元,其中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重庆汽车培训理论知识课件
- 重大安全发现管控课件
- 老年人糖尿病护理课件
- 老年人播音主持课件
- 老年人应急知识培训方案课件
- CN120204435A 一种综合药品稳定性实验箱灭菌控制方法及系统
- 水工监测工-渗流观测考试题库
- 第三节 第3课时 难点专攻夺高分-与圆有关的综合问题 2026年高三数学第一轮总复习
- 诗歌鉴赏考点提升-2023学年七年级语文上册重点知识(部编版)
- 酸碱中和反应说课课件
- 2025至2030中国核反应堆建造行业发展趋势分析与未来投资战略咨询研究报告
- 2025四川德阳经济技术开发区管理委员会考核招聘事业单位人员3人笔试备考试题及答案解析
- 2025至2030中国课外辅导行业发展研究与产业战略规划分析评估报告
- 电梯维护保养标准作业指导书
- 纪念西路军课件
- 一年级书法教学设计方案
- 2025年中国烟花爆竹协会烟花工艺师认证考试模拟题及答案
- 网络机房建设方案:规划、设计及实施指南
- 饮料厂合作合同协议书模板
- 医院风险评估体系构建与实施
- 2025年初级注册安全工程师(其他安全)历年参考题库含答案详解(5套)
评论
0/150
提交评论