《新课标》高三数学(人教版)第一轮复习单元讲座 第39讲 排列、组合、二项式定理.doc_第1页
《新课标》高三数学(人教版)第一轮复习单元讲座 第39讲 排列、组合、二项式定理.doc_第2页
《新课标》高三数学(人教版)第一轮复习单元讲座 第39讲 排列、组合、二项式定理.doc_第3页
《新课标》高三数学(人教版)第一轮复习单元讲座 第39讲 排列、组合、二项式定理.doc_第4页
《新课标》高三数学(人教版)第一轮复习单元讲座 第39讲 排列、组合、二项式定理.doc_第5页
免费预览已结束,剩余15页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

普通高中课程标准实验教科书数学 人教版 高三新数学第一轮复习教案(讲座39)排列、组合、二项式定理一课标要求:1分类加法计数原理、分步乘法计数原理通过实例,总结出分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题;2排列与组合通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题;3二项式定理能用计数原理证明二项式定理; 会用二项式定理解决与二项展开式有关的简单问题。二命题走向本部分内容主要包括分类计数原理、分步计数原理、排列与组合、二项式定理三部分;考查内容:(1)两个原理;(2)排列、组合的概念,排列数和组合数公式,排列和组合的应用;(3)二项式定理,二项展开式的通项公式,二项式系数及二项式系数和。排列、组合不仅是高中数学的重点内容,而且在实际中有广泛的应用,因此新高考会有题目涉及;二项式定理是高中数学的重点内容,也是高考每年必考内容,新高考会继续考察。考察形式:单独的考题会以选择题、填空题的形式出现,属于中低难度的题目,排列组合有时与概率结合出现在解答题中难度较小,属于高考题中的中低档题目;预测2007年高考本部分内容一定会有题目涉及,出现选择填空的可能性较大,与概率相结合的解答题出现的可能性较大。三要点精讲1排列、组合、二项式知识相互关系表2两个基本原理(1)分类计数原理中的分类;(2)分步计数原理中的分步;正确地分类与分步是学好这一章的关键。3排列(1)排列定义,排列数(2)排列数公式:系 =n(n1)(nm+1);(3)全排列列: =n!;(4)记住下列几个阶乘数:1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;4组合(1)组合的定义,排列与组合的区别;(2)组合数公式:Cnm=;(3)组合数的性质Cnm=Cnn-m;rCnr=nCn-1r-1;Cn0+Cn1+Cnn=2n;Cn0-Cn1+(-1)nCnn=0,即 Cn0+Cn2+Cn4+=Cn1+Cn3+=2n-1;5二项式定理(1)二项式展开公式:(a+b)n=Cn0an+Cn1an-1b+Cnkan-kbk+Cnnbn;(2)通项公式:二项式展开式中第k+1项的通项公式是:Tk+1=Cnkan-kbk;6二项式的应用(1)求某些多项式系数的和;(2)证明一些简单的组合恒等式;(3)证明整除性。求数的末位;数的整除性及求系数;简单多项式的整除问题;(4)近似计算。当|x|充分小时,我们常用下列公式估计近似值:(1+x)n1+nx;(1+x)n1+nx+x2;(5)证明不等式。四典例解析题型1:计数原理例1完成下列选择题与填空题(1)有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有 种。A81B64C24D4(2)四名学生争夺三项冠军,获得冠军的可能的种数是( )A81B64C24D4(3)有四位学生参加三项不同的竞赛,每位学生必须参加一项竞赛,则有不同的参赛方法有 ;每项竞赛只许有一位学生参加,则有不同的参赛方法有 ;每位学生最多参加一项竞赛,每项竞赛只许有一位学生参加,则不同的参赛方法有 。解析:(1)完成一件事是“分步”进行还是“分类”进行,是选用基本原理的关键。将“投四封信”这件事分四步完成,每投一封信作为一步,每步都有投入三个不同信箱的三种方法,因此:N=3333=34=81,故答案选A。本题也可以这样分类完成,四封信投入一个信箱中,有C31种投法;四封信投入两个信箱中,有C32(C41A22+C42C22)种投法;四封信投入三个信箱,有两封信在同一信箱中,有C42A33种投法、,故共有C31+C32(C41A22+C42C22)+C42A33=81(种)。故选A。(2)因学生可同时夺得n项冠军,故学生可重复排列,将4名学生看作4个“店”,3项冠军看作“客”,每个“客”都可住进4家“店”中的任意一家,即每个“客”有4种住宿法。由分步计数原理得:N=444=64。故答案选B。(3)学生可以选择项目,而竞赛项目对学生无条件限制,所以类似(1)可得N=34=81(种);竞赛项目可以挑学生,而学生无选择项目的机会,每一项可以挑4种不同学生,共有N=43=64(种);等价于从4个学生中挑选3个学生去参加三个项目的竞赛,每人参加一项,故共有C43A33=24(种)。例2(06江苏卷)今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有种不同的方法(用数字作答)。解析:本题考查排列组合的基本知识,由题意可知,因同色球不加以区分,实际上是一个组合问题,共有。点评:分步计数原理与分类计数原理是排列组合中解决问题的重要手段,也是基础方法,在高中数学中,只有这两个原理,尤其是分类计数原理与分类讨论有很多相通之处,当遇到比较复杂的问题时,用分类的方法可以有效的将之化简,达到求解的目的。题型2:排列问题例3(1)(06北京卷)在这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有( )(A)36个 (B)24个 (C)18个 (D)6个(2)(06福建卷)从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有( )(A)108种 (B)186种 (C)216种 (D)270种(3)(06湖南卷)在数字1,2,3与符号,五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是( )A6 B. 12 C. 18 D. 24(4)(06重庆卷)高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是( )(A)1800 (B)3600 (C)4320 (D)5040解析:(1)依题意,所选的三位数字有两种情况:(1)3个数字都是奇数,有种方法(2)3个数字中有一个是奇数,有,故共有24种方法,故选B;(2)从全部方案中减去只选派男生的方案数,合理的选派方案共有=186种,选B;(3)先排列1,2,3,有种排法,再将“”,“”两个符号插入,有种方法,共有12种方法,选B;(4)不同排法的种数为3600,故选B。点评:合理的应用排列的公式处理实际问题,首先应该进入排列问题的情景,想清楚我处理时应该如何去做。例4(1)(06天津卷)用数字0,1,2,3,4组成没有重复数字的五位数,则其中数字1,2相邻的偶数有个(用数字作答);(2)(06上海春)电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有 种不同的播放方式(结果用数值表示).解析:(1)可以分情况讨论: 若末位数字为0,则1,2,为一组,且可以交换位置,3,4,各为1个数字,共可以组成个五位数; 若末位数字为2,则1与它相邻,其余3个数字排列,且0不是首位数字,则有个五位数; 若末位数字为4,则1,2,为一组,且可以交换位置,3,0,各为1个数字,且0不是首位数字,则有=8个五位数,所以全部合理的五位数共有24个。(2)分二步:首尾必须播放公益广告的有A22种;中间4个为不同的商业广告有A44种,从而应当填 A22A4448. 从而应填48。点评:排列问题不可能解决所有问题,对于较复杂的问题都是以排列公式为辅助。题型三:组合问题例5(1)(06重庆卷)将5名实习教师分配到高一年级的个班实习,每班至少名,最多名,则不同的分配方案有( )(A)种(B)种 (C)种(D)种(2)(06天津卷)将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有()A10种B20种C36种 D52种解析:(1)将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则将5名教师分成三组,一组1人,另两组都是2人,有种方法,再将3组分到3个班,共有种不同的分配方案,选B;(2)将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,分情况讨论:1号盒子中放1个球,其余3个放入2号盒子,有种方法;1号盒子中放2个球,其余2个放入2号盒子,有种方法;则不同的放球方法有10种,选A。点评:计数原理是解决较为复杂的排列组合问题的基础,应用计数原理结合例6(1)(06陕西卷)某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,则不同的选派方案共有 种;(2)(06全国II)5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有( )(A)150种 (B)180种 (C)200种 (D)280种 解析:(1)可以分情况讨论, 甲去,则乙不去,有=480种选法;甲不去,乙去,有=480种选法;甲、乙都不去,有=360种选法;共有1320种不同的选派方案;(2)人数分配上有1,2,2与1,1,3两种方式,若是1,2,2,则有60种,若是1,1,3,则有90种,所以共有150种,选A。点评:排列组合的交叉使用可以处理一些复杂问题,诸如分组问题等;题型4:排列、组合的综合问题例7平面上给定10个点,任意三点不共线,由这10个点确定的直线中,无三条直线交于同一点(除原10点外),无两条直线互相平行。求:(1)这些直线所交成的点的个数(除原10点外)。(2)这些直线交成多少个三角形。解法一:(1)由题设这10点所确定的直线是C102=45条。这45条直线除原10点外无三条直线交于同一点,由任意两条直线交一个点,共有C452个交点。而在原来10点上有9条直线共点于此。所以,在原来点上有10C92点被重复计数;所以这些直线交成新的点是:C45210C92=630。(2)这些直线所交成的三角形个数可如下求:因为每个三角形对应着三个顶点,这三个点来自上述630个点或原来的10个点。所以三角形的个数相当于从这640个点中任取三个点的组合,即C6403=43486080(个)。解法二:(1)如图对给定的10点中任取4个点,四点连成6条直线,这6条直线交3个新的点。故原题对应于在10个点中任取4点的不同取法的3倍,即这些直线新交成的点的个数是:3C104=630。(2)同解法一。点评:用排列、组合解决有关几何计算问题,除了应用排列、组合的各种方法与对策之外,还要考虑实际几何意义。例8已知直线ax+by+c=0中的a,b,c是取自集合3,2,1,0,1,2,3中的3个不同的元素,并且该直线的倾斜角为锐角,求符合这些条件的直线的条数。解 设倾斜角为,由为锐角,得tan=-0,即a、b异号。(1)若c=0,a、b各有3种取法,排除2个重复(3x-3y=0,2x-2y=0,x-y=0),故有33-2=7(条);(2)若c0,a有3种取法,b有3种取法,而同时c还有4种取法,且其中任两条直线均不相同,故这样的直线有334=36条,从而符合要求的直线共有7+36=43条;点评:本题是1999年全国高中数学联赛中的一填空题,据抽样分析正确率只有0.37。错误原因没有对c=0与c0正确分类;没有考虑c=0中出现重复的直线。题型5:二项式定理例9(1)(湖北卷)在的展开式中,的幂的指数是整数的项共有A3项 B4项 C5项 D6项(2)的展开式中含x的正整数指数幂的项数是(A)0(B)2(C)4(D)6解析:本题主要考查二项式展开通项公式的有关知识;(1),当r0,3,6,9,12,15,18,21,24时,x的指数分别是24,20,16,12,8,4,0,4,8,其中16,8,4,0,8均为2的整数次幂,故选C;(2)的展开式通项为,因此含x的正整数次幂的项共有2项.选B;点评:多项式乘法的进位规则。在求系数过程中,尽量先化简,降底数的运算级别,尽量化成加减运算,在运算过程可以适当注意令值法的运用,例如求常数项,可令.在二项式的展开式中,要注意项的系数和二项式系数的区别。例10(1)(06江西卷)在(x)2006 的二项展开式中,含x的奇次幂的项之和为S,当x时,S等于( )A.23008 B.23008 C.23009 D.23009(2)(06山东卷)已知的展开式中第三项与第五项的系数之比为,其中=1,则展开式中常数项是( )(A)45i (B) 45i (C) 45 (D)45(3)(06浙江卷)若多项式( )(A)9 (B)10 (C)9 (D)10解析:(1)设(x)2006a0x2006a1x2005a2005xa2006;则当x时,有a0()2006a1()2005a2005()a20060 (1),当x时,有a0()2006a1()2005a2005()a200623009 (2),(1)(2)有a1()2005a2005()23009223008,故选B;(2)第三项的系数为,第五项的系数为,由第三项与第五项的系数之比为可得n10,则,令405r0,解得r8,故所求的常数项为45,选A;(3)令,得,令,得;点评:本题考查二项式展开式的特殊值法,基础题;题型6:二项式定理的应用例11证明下列不等式:(1)()n,(a、bx|x是正实数,nN);(2)已知a、b为正数,且+=1,则对于nN有(a+b)n-an-bn22n-2n+1。证明:(1)令a=x+,b=x,则x=;an+bn=(x+)n+(x-)n=xn+Cn1xn-1+Cnnn+xn-Cn1xn-1+(-1)nCnnn=2(xn+Cn2xn-22+Cn4xn-44+)2xn即()n(2)(a+b)n=an+Cn1an-1b+Cnnbn(a+b)n=bn+Cn1bn-1a+Cnnan上述两式相加得:2(a+b)n=(an+bn)+Cn1(an-1b+bn-1a)+Cnk(an-kbk+bn-kak)+Cnn(an+bn) (*)+=1,且a、b为正数ab=a+b2 ab4又an-kbk+bn-kak2=2()n(k=1,2,n-1)2(a+b) n2an+2bn+Cn12()n+Cn22()n+Cnn-12()n(a+b)nan-bn(Cn1+Cn2+Cnn-1)()n(2n2)2n=22n2n+1点评:利用二项式定理的展开式,可以证明一些与自然数有关的不等式问题。题(1)中的换元法称之为均值换元(对称换元)。这样消去奇数次项,从而使每一项均大于或等于零。题(2)中,由由称位置二项式系数相等,将展开式倒过来写再与原来的展开式相加,这样充分利用对称性来解题的方法是利用二项式展开式解题的常用方法。例12(1)求46n+5n+1被20除后的余数;(2)7n+Cn17n-1+Cn27n-2+Cnn-17除以9,得余数是多少?(3)根据下列要求的精确度,求1.025的近似值。精确到0.01;精确到0.001。解析:(1)首先考虑46n+5n+1被4整除的余数。5n+1=(4+1)n+1=4n+1+Cn+114n+Cn+124n-1+Cn+1n4+1,其被4整除的余数为1,被20整除的余数可以为1,5,9,13,17,然后考虑46n+1+5n+1被5整除的余数。46n=4(5+1)n=4(5n+Cn15n-1+Cn25n-2+Cnn-15+1),被5整除的余数为4,其被20整除的余数可以为4,9,14,19。综上所述,被20整除后的余数为9。(2) 7n+Cn17n-1+Cn27n-2+Cnn-17 =(7+1)n1=8n1=(9-1)n1 =9n-Cn19n-1+Cn29n-2+(1)n-1Cnn-19+(1)nCnn-1(i)当n为奇数时原式=9n-Cn19n-1+Cn29n-2+(1)n-1Cnn-192除以9所得余数为7。(ii)当n为偶数时原式=9n-Cn19n-1+Cn29n-2+(1)n-1Cnn-19除以9所得余数为0,即被9整除。(3)(1.02)5(1+0.02)5 =1+c510.02+C520.022+C530.023+C540.024+C550.025C520.022=0.004,C530.023=810-5当精确到0.01时,只要展开式的前三项和,1+0.10+0.004=1.104,近似值为1.10。当精确到0.001时,只要取展开式的前四项和,1+0.10+0.004+0.0008=1.10408,近似值为1.104。点评:(1)用二项式定理来处理余数问题或整除问题时,通常把底数适当地拆成两项之和或之差再按二项式定理展开推得所求结论;(2)用二项式定理来求近似值,可以根据不同精确度来确定应该取到展开式的第几项。五思维总结解排列组合应用题的基本规律1分类计数原理与分步计数原理使用方法有两种:单独使用;联合使用。2将具体问题抽象为排列问题或组合问题,是解排列组合应用题的关键一步。3对于带限制条件的排列问题,通常从以下三种途径考虑:(1)元素分析法:先考虑特殊元素要求,再考虑其他元素;(2)位置分析法:先考虑特殊位置的要求,再考虑其他位置;(3)整体排除法:先算出不带限制条件的排列数,再减去不满足限制条件的排列数。4对解组合问题,应注意以下三点:(1)对“组合数”恰当的分类计算,是解组合题的常用方法;(2)是用“直接法”还是“间接法”解组合题,其原则是“正难则反”;(3)设计“分组方案”是解组合题的关键所在。普通高中课程标准实验教科书数学 人教版 高三新数学第一轮复习教案(讲座36)空间向量及其应用一课标要求:(1)空间向量及其运算 经历向量及其运算由平面向空间推广的过程; 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示; 掌握空间向量的线性运算及其坐标表示; 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。(2)空间向量的应用 理解直线的方向向量与平面的法向量; 能用向量语言表述线线、线面、面面的垂直、平行关系; 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理); 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。二命题走向本讲内容主要涉及空间向量的坐标及运算、空间向量的应用。本讲是立体几何的核心内容,高考对本讲的考察形式为:以客观题形式考察空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。预测07年高考对本讲内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处理角和距离将是主要方法,在复习时应加大这方面的训练力度。三要点精讲1空间向量的概念向量:在空间,我们把具有大小和方向的量叫做向量。如位移、速度、力等。相等向量:长度相等且方向相同的向量叫做相等向量。表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。说明:由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。2向量运算和运算率 加法交换率:加法结合率:数乘分配率:说明:引导学生利用右图验证加法交换率,然后推广到首尾相接的若干向量之和;向量加法的平行四边形法则在空间仍成立。3平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。平行于记作。 注意:当我们说、共线时,对应的有向线段所在直线可能是同一直线,也可能是平行直线;当我们说、平行时,也具有同样的意义。共线向量定理:对空间任意两个向量()、,的充要条件是存在实数使注:上述定理包含两个方面:性质定理:若(0),则有,其中是唯一确定的实数。判断定理:若存在唯一实数,使(0),则有(若用此结论判断、所在直线平行,还需(或)上有一点不在(或)上)。对于确定的和,表示空间与平行或共线,长度为 |,当0时与同向,当0时与反向的所有向量。若直线l,P为l上任一点,O为空间任一点,下面根据上述定理来推导的表达式。推论:如果l为经过已知点A且平行于已知非零向量的直线,那么对任一点O,点P在直线l上的充要条件是存在实数t,满足等式 其中向量叫做直线l的方向向量。在l上取,则式可化为 当时,点P是线段AB的中点,则 或叫做空间直线的向量参数表示式,是线段AB的中点公式。注意:表示式()、()既是表示式,的基础,也是常用的直线参数方程的表示形式;推论的用途:解决三点共线问题。结合三角形法则记忆方程。4向量与平面平行:如果表示向量的有向线段所在直线与平面平行或在平面内,我们就说向量平行于平面,记作。注意:向量与直线a的联系与区别。共面向量:我们把平行于同一平面的向量叫做共面向量。共面向量定理 如果两个向量、不共线,则向量与向量、共面的充要条件是存在实数对x、y,使注:与共线向量定理一样,此定理包含性质和判定两个方面。推论:空间一点P位于平面MAB内的充要条件是存在有序实数对x、y,使或对空间任一定点O,有在平面MAB内,点P对应的实数对(x, y)是唯一的。式叫做平面MAB的向量表示式。又代入,整理得 由于对于空间任意一点P,只要满足等式、之一(它们只是形式不同的同一等式),点P就在平面MAB内;对于平面MAB内的任意一点P,都满足等式、,所以等式、都是由不共线的两个向量、(或不共线三点M、A、B)确定的空间平面的向量参数方程,也是M、A、B、P四点共面的充要条件。5空间向量基本定理:如果三个向量、不共面,那么对空间任一向量,存在一个唯一的有序实数组x, y, z, 使说明:由上述定理知,如果三个向量、不共面,那么所有空间向量所组成的集合就是,这个集合可看作由向量、生成的,所以我们把,叫做空间的一个基底,都叫做基向量;空间任意三个不共面向量都可以作为空间向量的一个基底;一个基底是指一个向量组,一个基向量是指基底中的某一个向量,二者是相关联的不同的概念;由于可视为与任意非零向量共线。与任意两个非零向量共面,所以,三个向量不共面就隐含着它们都不是。推论:设O、A、B、C是不共面的四点,则对空间任一点P,都存在唯一的有序实数组,使6数量积(1)夹角:已知两个非零向量、,在空间任取一点O,作,则角AOB叫做向量与的夹角,记作ABO(1)OAB(2)ABO(3)说明:规定0,因而=;如果=,则称与互相垂直,记作;ABO(4)在表示两个向量的夹角时,要使有向线段的起点重合,注意图(3)、(4)中的两个向量的夹角不同,图(3)中AOB=,图(4)中AOB=,从而有=.(2)向量的模:表示向量的有向线段的长度叫做向量的长度或模。(3)向量的数量积:叫做向量、的数量积,记作。ABl即=,向量:(4)性质与运算率。 =0 = 四典例解析题型1:空间向量的概念及性质例1有以下命题:如果向量与任何向量不能构成空间向量的一组基底,那么的关系是不共线;为空间四点,且向量不构成空间的一个基底,那么点一定共面;已知向量是空间的一个基底,则向量,也是空间的一个基底。其中正确的命题是( ) 解析:对于“如果向量与任何向量不能构成空间向量的一组基底,那么的关系一定共线”;所以错误。正确。点评:该题通过给出命题的形式考察了空间向量能成为一组基的条件,为此我们要掌握好空间不共面与不共线的区别与联系。例2下列命题正确的是( )若与共线,与共线,则与共线;向量共面就是它们所在的直线共面;零向量没有确定的方向;若,则存在唯一的实数使得;解析:A中向量为零向量时要注意,B中向量的共线、共面与直线的共线、共面不一样,D中需保证不为零向量。答案C。点评:零向量是一个特殊的向量,时刻想着零向量这一特殊情况对解决问题有很大用处。像零向量与任何向量共线等性质,要兼顾。题型2:空间向量的基本运算例3如图:在平行六面体中,为与的交点。若,则下列向量中与相等的向量是( ) 解析:显然;答案为A。点评:类比平面向量表达平面位置关系过程,掌握好空间向量的用途。用向量的方法处理立体几何问题,使复杂的线面空间关系代数化,本题考查的是基本的向量相等,与向量的加法.考查学生的空间想象能力。例4已知:且不共面.若,求的值.解:,且即又不共面,点评:空间向量在运算时,注意到如何实施空间向量共线定理。题型3:空间向量的坐标例5(1)已知两个非零向量=(a1,a2,a3),=(b1,b2,b3),它们平行的充要条件是()A. :|=:|B.a1b1=a2b2=a3b3C.a1b1+a2b2+a3b3=0D.存在非零实数k,使=k(2)已知向量=(2,4,x),=(2,y,2),若|=6,则x+y的值是()A. 3或1 B.3或1 C. 3 D.1(3)下列各组向量共面的是()A. =(1,2,3),=(3,0,2),=(4,2,5)B. =(1,0,0),=(0,1,0),=(0,0,1)C. =(1,1,0),=(1,0,1),=(0,1,1)D. =(1,1,1),=(1,1,0),=(1,0,1)解析:(1)D;点拨:由共线向量定线易知;(2)A点拨:由题知或;(3)A点拨:由共面向量基本定理可得。点评:空间向量的坐标运算除了数量积外就是考察共线、垂直时参数的取值情况。例6已知空间三点A(2,0,2),B(1,1,2),C(3,0,4)。设=,=,(1)求和的夹角;(2)若向量k+与k2互相垂直,求k的值.思维入门指导:本题考查向量夹角公式以及垂直条件的应用,套用公式即可得到所要求的结果.解:A(2,0,2),B(1,1,2),C(3,0,4),=,=,=(1,1,0),=(1,0,2).(1)cos=,和的夹角为。(2)k+=k(1,1,0)+(1,0,2)(k1,k,2),k2=(k+2,k,4),且(k+)(k2),(k1,k,2)(k+2,k,4)=(k1)(k+2)+k28=2k2+k10=0。则k=或k=2。点拨:第(2)问在解答时也可以按运算律做。(+)(k2)=k22k22=2k2+k10=0,解得k=,或k=2。题型4:数量积例7(2000江西、山西、天津理,4)设、c是任意的非零平面向量,且相互不共线,则()()= | ()()不与垂直(3+2)(32)=9|24|2中,是真命题的有( )A. B. C. D.答案:D解析:平面向量的数量积不满足结合律.故假;由向量的减法运算可知|、|、|恰为一个三角形的三条边长,由“两边之差小于第三边”,故真;因为()()=()()=0,所以垂直.故假;(3+2)(32)=94=9|24|2成立.故真.点评:本题考查平面向量的数量积及运算律。例8(1)(2002上海文,理2)已知向量和的夹角为120,且|=2,|=5,则(2)=_.(2)设空间两个不同的单位向量=(x1,y1,0),=(x2,y2,0)与向量=(1,1,1)的夹角都等于。(1)求x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论