风景园林外文翻译.doc_第1页
风景园林外文翻译.doc_第2页
风景园林外文翻译.doc_第3页
风景园林外文翻译.doc_第4页
风景园林外文翻译.doc_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

淮 阴 工 学 院毕业设计(论文)外文资料翻译学 院:生命科学与化学工程学院专 业:园林姓 名:姜宇学 号:1121614104外文出处:Procedia Engineering (2013)(用外文写)ISSN 1867-0520附 件:1.外文资料翻译译文;2.外文原文。指导教师评语: 外文资料内容与毕业设计内容相关性好,能灵活处理一般性翻译技巧和具体句型翻译的关系,没有基本的语法错误,用词准确。译文通顺,符合汉语表达习惯。2014年3月12日签名: (手写签名) 附件1:外文资料翻译译文现代茶室一个现代游牧民族建筑Gerd Schmid 现代茶馆是一个小的游牧民族建筑形式由TL和Kengo Kuma一起设计的。它被用于日本茶仪式而在法兰克福它主要被用于“博物馆皮毛运用艺术”。这种像床垫的结构仅需四个人就可以把它竖起或取下。单室房子的内部气压是1500帕,仅是高压梁重量的1%但却比普通的充气结构高5倍。现代茶室可以在博物馆入口走廊处和博物馆花园的小山丘上自由放置。当不使用它的时候,它可以被放在小推车上打包带走。 1茶室传统,茶室设计茶的艺术,一个人应该知道,不再是,沸腾的水,准备茶和饮用水。这首由 Sen No Riky在16世纪写的诗显示了茶道的趋势开始远离宫廷茶道。但是茶的仪式不是快速饮用。饮茶时的准备和清洁只要花很少的时间,有关茶仪式的知识和与身体运动的联系要求有良好的教育才能使孩子们知道。2快速跟踪预览现代茶室是来自日本公司的一个给皮毛艺术博物馆的礼物了,来补充日本精细收藏艺术和日本茶具。这个项目,在2005年末第一次引起我们的注意;这个设计作品在2006年末开始建造在10个月之后完成。他们用了7分钟的字幕和3分钟的正片用电影的形式来记录这10个月的工作。在开头字幕出现的时候会伴随着闪动着的用德语、英语、日语书写的电子邮件穿过屏幕;问题和答案会合并成一个五彩缤纷的万花筒。自这个项目作为一个非营利性的事业开始,它花了相当大的时间来建立了一个团队的共同目标、团队结构、筹资和分工。Kengo Kuma的最早的建筑形式已经有了具有柔软外轮廓的双层墙结构(见图一),这是FormTL连续数月的调整、讨论的结果,他们希望设计朝着更高的精度,装拆方便的双层充气结构前进。(见图2,3)最终的解决方案也被证明符合日本赞助商的预算和博物馆的要求。最后我们整合了很多轻量级特色小品到这个小茶馆:可拆卸的连接如密封和非密封拉链,keder型材、连接柔性管还有的食品工业,用卷门、空气作为承重材料(这是通常被迫,快速燃烧,吸出),半透明的特氟隆面料,可折叠的薄膜可以在不损失稳定性达到最大密实度,避免材料的气味与茶的香味干扰。3项目描述由于其半花生形状,茶馆很快就给出了“花生”的题目:膜测量约80平方米环绕其他大约60平方米的膜在距离40100厘米。TH MEM薄膜的焊接密封的一另一个在安装表面相似的一种充气船或游泳等装置,四辆,五薄合成电缆每平方联系支撑空气被注入的表面之间的表,(见图4)。 然而,两壳仅部分耦合在特定的点上,而不是在一个充气床垫室模式。其结果是一个单一的空气室床垫大厅的“高尔夫球”内外表面的纹理。内部压力会造成一个灵活的外壳,在双向传输负载。在这个软壳的安装面尺寸、内部公关压力和连接数是稳定性的主要因素。在1000 Pa以上,“花生”是完全舒张和刚直,在1500 Pa,软壳稳定足以抵挡暴风雨的强烈。尽管使用空气作为辅助元素,这种特殊的设计不需要气闸,因为展馆内的空气压力和空气压力外相同的优点。在一个充气的大厅里,很少有建筑物采用这种方法,它可以更快地设置,(见图5)。 现代茶馆被设计为一个无障碍结构,能承受更大的力量,而不是第一眼你觉得它就可以承担的力量。当亭在外面,它可以承受高达100公里/小时的风。 4结构分析在预装载荷分析上,荷载的建筑部件进行均匀(膜内耦合电缆外膜)的排列。模型研究进行了2个额外的类型:风从侧面来和风从上面来。(见图6)中的颜色显示在三楼组成的张力(绿色=低张力,黄=平均张力,红=高压)。自耦电缆预泄出的两个弹簧会分离,压缩空气不能膨胀,压缩空气也不会因此增加。这导致在膜的张力和耦合电缆拉力的局部增加,激活附加稳定E弹性力。这种建筑方法的结构稳定性和承载能力建立在“体积不变”的原则之上。 而膜转移负荷均匀(3.5千牛/米)下的风荷载,另一个令人惊讶的结果是,预紧力的内膜受到较大的应力比下ER膜(2和1.5 kN / m)。 5计算程序在力密度的帮助下,对膜壳进行了分析,开始在预应力索的计算下开始建模。根据这一方法,膜的特性,特别是刚度,对电缆施加。所用的程序是能够找到一个平衡的力量,即使在强烈变形系统。模拟强起伏的表面具有足够的精度,我们使用一个网格的外层膜只有20厘米NE对内膜只有15厘米。 6膜由tenara 3t40制成 Tenara 3t40是由一个最有价值的膜材料:膨体聚四氟乙烯(PTFE)制成的。在戈尔公司制造,这种织物材料高度透明(38%透射率在可见光范围内),其厚度只有0.38毫米,重量为630克/平方米单位面积也能够承受大约2900 / 3000/ 5厘米(即6吨/米)。其具有明显的耐折性和耐撕裂性,是标准涂层织物的2至五倍的,我们预计结构会很好,即使反复膨胀和紧缩也不会影响其结构。 戈尔推荐用50毫米宽的高频焊接来焊接接缝。随着焊接在结构轻量化的埃森实验室压力测试的帮助(ELLF)下,我们能够确定30毫米宽接缝是足够应对各种情况的发生。 7切割方式,缝布局,连接,细节,制造提供的织物是1.5米宽,这减少了一半,我们切削过程中极力确保小的曲率半径,其计算模型显示电缆之间的耦合在2膜中,可形成无皱纹。两膜组装拼凑起来像116膜件,包括门框。本片只有0.2到3.5平方米的一个最大宽度75厘米的区域。他们是联合成一个支撑单元的耦合306合成电缆弹簧安全钩,每40长80厘米,由焊接门洞周围基底膜的焊接。为了维护和修理的方便,他们采用两密封的结构,而且吧1.5米长的TIZIP拉链集成到基底膜。这些PVC拉链是唯一的缝纫项目,位于空气泄漏区的incompatibiliTY PVC和tenara之间。设计师准备垂直连接这两个壳,这只有是有可能的,因为内外膜的几何“不一样”,需要特别注意。卡诺比奥公司,在意大利北部的Fab ricator专家,组成一个15人小组。卡诺比奥接受了把小膜碎片焊接在一起的复杂任务。由于展馆的小尺寸和膜的低预紧,工作必须满足精度高标准,因为任何的错误和褶皱都将影响整个结构。每平方米的劳动投入是其他膜结构的三倍,因为这个展馆的每一个元素都是在一个较小的范围。(见图7和8)。8基础板和发光二极管 为了确保馆不会被风吹走,上举的2 T必须固定在外连接线和内部连接线之间。本地化,这意味着要符合国际标准的150公斤/米,确保展馆在夜间照明(见图9),一个LED通道集成到肾形的通道部分(见图10和11)。通道段是螺栓连接的树脂锚的基础板(肾形)。切割模式方案图。116个狭窄的膜件之一(见图9)。由发光二极管照明。9空气管理“超大”鼓风机确保快速充气只要10分钟。1.5千瓦的径向风扇提供1000立方米/小时的风量,压力高达2200 Pa可以防止潮湿或灰尘积聚在膜前,空气经由过滤器和粉尘加湿并且有一个0.9千瓦的吸附式干燥机。在测试安装后,在博物馆的大堂2个操作方法进行了测试:顺序和滑动操作。时序操作允许短暂的停止鼓风机。滑动操作更为适宜:这个操作方法,使得空气不断泄漏和补偿达到一个稳定值。因此,风机可以在大堂设置和操作,可以把噪音降到可以容忍的水平。鼓风机和干燥器,以及一个小的0.6千瓦的吸风机(用于快速放气和拆卸),可很容易得由两人操作。(见图12) 10尺寸 楼面面积:32平方米周长:20米垫层体积:35立方米 主要措施:94.63.4米(长宽高) 11需要时间和反思茶室是暂时使用的,建造时从选定的材料小心地连接。入口小而低,房间小具有较高的天花板。脱掉你的鞋,弯腰,坐在“榻榻米”(一个日本的茶垫)上参加这个日本的仪式,你会感到平静和忘记你的悲伤。土木工程师协会名称新总干事 领导工程土木工程师学会(冰),证实了Nick Baveystock任命为冰的下任总干事和秘书,汤姆富尔克在2011年底退休。 Nick Baveystok具有英国陆军和国防部背景。他在具有领导建设,培训和变革管理,以及COM高团和工程业务的丰富经验。在过去的10年中,Nick Baveystock参与国际冲突后重建和发展,如巴尔干半岛和伊拉克南部。在那里他曾被卷入水中,但他还是继续坚持。 他将在2011年11月14号加入ICE,准备在2012年一月正式上任。Tom Foulkes继续担任DG直到十二月结束。 他继续说:“Nick Baveystock被任命建设这个平台,同时也将专注于使得ICE成员共享专业知识的途径更有效,从而进一步提高土木工程的形象。”附件2:外文原文The Modern Teahouse a contemporary nomadic buildingGerd SchmidThe Modern Teahouse is a small nomadic building formTL designed together with Kengo Kuma. It is used for Japanese tea ceremonies in the garden of the “Museum fr Angewandte Kunst” in Frankfurt am Main. The mattress-like structure can be erected and taken down by just four people. The internal air pressure of this single-chamber air house is 1500 Pa only 1 % that of a high-pressure beam but five times higher than a normal pneumatic structure. The Modern Teahouse “wanders” between the entrance hall of the museum and a little hill in the museum garden. When it is not in use, it is packed away on a trolley.in monthly discussions, always mov-ing towards greater precision until a self-supporting, double-wall inflatable structure with minimal setup and dis-mantling times was arrived at (albeit after a “detour” that involved a plug-in frame with a membrane shell), see Figs. 2 and 3.1 Teahouse tradition, teahouse designThe art of tea,One should know,Is no more,Than boiling water,Preparing tea and drinking.This poem by Sen No Riky from the 16th century shows the trend away from pretentious courtly tea cere-monies 1. But a tea ceremony is not a fast drink. With the preparation, drinking and cleaning, it takes a few hours, and the knowledge of the tea ceremony and the associated body movements belongs to a good childs education.During the credits there would be flashes of eight variations flickering across the screen and many e-mails in German, English and Japanese; ques-tions and answers would merge into a colourful kaleidoscope. Since the project started out as a non-profit un-dertaking, it took a considerable amount of time before the team had established a common goal and be-fore a team structure, financing and di-vision of labour were established.Kengo Kumas earliest sketches (see Fig. 1) already show a double-walled structure with a soft outline, which formTL continued to modifyThe ultimate solution also proved compatible with the budget envisioned by the Japanese sponsors and the re-quirements of the museum.In the end we integrated many lightweight specials into this small teahouse pavilion: detachable con-nections such as airtight and non-air-tight zippers, keder profiles, flexible ducts with connections also used by the food industry, rolled doors, air as a loadbearing material (which is nor-mally forced in and, for rapid defla-tion, sucked out), translucent Teflon fabric, which can be folded to achieve maximum compactness without loss of stability and which does not smell to avoid interference with the fine aroma of the tea.2 Fast-track previewThe Modern Teahouse is a gift from Japanese companies to the “Museum fr Angewandte Kunst”, to comple-ment its collection of Japanese fine art and Japanese teasets.It is a project that was first brought to our attention in late 2005; the design work began at the end of2006andwascompletedin10 months.Recreating thosetenmonths in film minutes would resultin seven minutes of quiet openingcreditsandthreeminutes of action. Fig. 1. Layout by Kengo Kuma, September 2005Steel Construction 4 (2011), No. 2121ReportsFig. 2. Longitudinal sectionFig. 3. Transverse section3 Project descriptionThanks to its half-peanut shape, the teahouse was soon given the working title of “Peanut”: a membrane mea-suring roughly 80 m2 surrounds an-other roughly 60 m2 membrane at a distance of 40100 cm. Both mem-branes are welded airtight to one an-other at the installation surface simi-lar to an inflatable boat or a floata-tion device for swimmers, and linked by four or five thin synthetic cables per square meter of surface between which the supporting air is injected, see Fig. 4.However, the two shells are only partially coupled at specific points, instead of following the chamber pat-tern of an air mattress. The result is a single air chamber mattress hall with a “golf-ball” texture on the inner and outer surfaces. The internal pressure creates a flexible shell that transfers loads in two directions. In this soft shell, the size of the installation sur-face, the inner pressure and the num-ber of connections are the principal factors for the stability. From 1000 Pa upwards, the “Peanut” is fully in-flated and upright, from 1500 Pa on-wards, the soft shell is stable and strong enough to withstand a storm.Despite the use of air as a sup-porting element, this special design does not require airlocks because the air pressure inside the pavilion is the same as the air pressure outside. The advantage of this rarely employed building method over an inflated air hall is that it can be set up much faster, see Fig. 5.The Modern Teahouse is de-signed as a trouble-free structure able to withstand far greater forces than the observer might assume at first glance. When the pavilion is set up outside, it can withstand winds of up to 100 km/h provided it is anchored inside and outside to a foundation slab with the help of high-performance zip-pers around the entire perimeter. For setting-up indoors, e.g. the museum lobby, neither an anchor nor a guide are required a fact that came as a sur-prise to us even though the structural model calculations had predicted this.4 Structural analysisIn the pretension load analysis, the loads are carried evenly by all build-ing components (inner membrane coupling cables outer membrane). Model studies were carried out for two additional types of loading: wind from the side and wind from above. In each loading case there are notice-able deformations and a new equilib-rium between the forces acting on the structure from the outside and the forces resisting from the inside. The colours in Fig. 6 indicate the tension present in the three building compo-nents (green = low tension, yellow = average tension, red = high tension).Since the coupling cables pre-vent separation of the two shells, the122Steel Construction 4 (2011), No. 2ReportsFig. 4. Sunlight reveals the cable linksFig. 5. The teahouse during inflationFig. 6. Forces in cable linkscompressed air cannot expand and its compression is thus increased. This results in a local increase in membrane tension and tensile forces in the coupling cables, activating ad-ditional stabilizing elastic forces. This building method owes its structural stability and loadbearing capacity to this “constant volume” principle.Whereas both membranes trans-fer loads evenly (up to 3.5 kN/m) un-der wind loads, another surprising re-sult was that under pretension the in-ner membrane is subjected to greater stresses than the outer membrane (2.0 and 1.5 kN/m respectively).5 Computation programThe membrane shells were analysed with the help of the force-densitymethod, a process of computational modelling for pretensioned cables. According to this method, the mem-brane characteristics, especially the stiffness, are imposed on the cables. The program used is capable of find-ing an equilibrium of forces even in strongly deformed systems. To simu-late the strongly undulating surface with sufficient accuracy, we used a mesh of only 20 cm for the outer membrane and only 15 cm for the in-ner membrane.6 Membrane made from Tenara 3T40The shells are made from one of the most valuable membrane materials: expanded polytetrafluoroethylene (PTFE). Manufactured by W. L. Gore Associates, this fabric material ishighly transparent (38 % transmit-tance in the visible light range), has a thickness of only 0.38 mm, a weight per unit area of 630 g/m2 and is also capable of withstanding a consider-able force in both directions, roughly 3000/2900 N/5 cm (i.e. 6 t/m). With its pronounced folding resistance and a tear resistance two to five times higher than that of standard coated fabrics, we anticipate that the struc-ture will hold up very well even after repeated inflation and deflation.Gore recommended 50 mm wide high-frequency welding seams. With the help of welding and stress tests at the Essen Laboratory for Lightweight Structures (ELLF), we were able to determine that 30 mm wide seams are sufficient for the tensions forces that occur.7 Cutting pattern, seam layout, connections, details, manufactureThe fabric as supplied was 1.5 m wide and this was halved by us for the cut-ting pattern to ensure that the small radii of curvature, which the compu-tational models revealed between the coupling cables in the two membranes, could form without wrinkles.The two membranes were assem-bled patchwork-like from 116 mem-brane pieces, excluding the door frames. The pieces were only between 0.2 and 3.5 m2 in area with a maxi-mum width of 75 cm. They were com-bined into a supporting unit by cou-pling 306 synthetic cables with spring safety hooks, each 4080 cm long, by the welded door openings and by the surrounding welded base membrane. For maintenance and repair pur-Steel Construction 4 (2011), No. 2123Reportsposes, two airtight, 1.5 m long Tizip zippers have been integrated into the base membrane. These PVC zippers are the only stitched items and air leakage zone as a result of the mater-ial incompatibility between PVC and Tenara.The quasi perpendicular connec-tion between the two shells, whichwas only approximately possible since the inner and outer membrane are geometrically “dissimilar”, required special attention.Canobbio S.P.A., the expert fab-ricator in northern Italy, formed a 15-person crew. Canobbio took on the complicated task of welding together the small membrane pieces and de-tails. Because of the pavilions small size and the low pretensioning of the membranes, the work had to meet ex-traordinarily high standards of preci-sion because any inaccuracies and folds would be visible later on. The labour input per square metre was three times that of other membrane structures because every element of this pavilion is on a smaller scale and visible from close up, see Figs. 7 and 8.8 Foundation slab and LED channelTo ensure that the pavilion will not be blown away by the wind, 2 t of up-lift must be anchored along the outer attachment line and 1 t along the in-ner attachment line. Localized, this translates into 150 kg/m. And to en-sure that the pavilion is illuminated at night (see Fig. 9), an LED channel is integrated to a kidney-shaped chan-nel section (see Figs. 10 and 11). The channel section is bolted with resin anchors to the foundation slab (also kidney-shaped).Fig. 7. Cutting pattern schemeFig. 8. One of the 116 narrow membrane piecesFig. 9. Teahouse illuminated by LEDsTo this end, the pavilion is fas-tened inside and outside around its entire perimeter to the channel section with the help of high-performance zippers and extruded keder profiles.9 Air managementAn “oversized” blower ensures rapid inflation in only 10 min. The 1.5 kW radial fan delivers 1000 m3/h at a pressure of up to 2200 Pa. To prevent humidity or dirt from accumulating in the membrane interior, the air is sucked in via fine dust filters and de-humidified with the help of a 0.9 kW absorption drier.Following a test installation out-side, two operating methods were tested in the lobby of the museum: sequential and sliding operation. Se-quential operation allows for the tem-porary shutdown of the blower, albeit at the cost of loud “catch-up” noise when the blower is switched on again. Sliding operation is more agreeable: with this operating method, leakages are constantly compensated for on a steady but minor scale. Hence, the blower can be set up and operated in the lobby with a tolerable noise level.The blower and the drier, as well as a small 0.6 kW suction fan (for rapid deflation and disassembly), are124Steel Construction 4 (2011), No. 2Reportsbuilt into a waffle-baffled steel box on balloon tyres, which can be easily moved by two people, see Figs. 12and 13.10 DimensionsFloor area: 32 m2Length of perimeter: 20 mCushion volume: 35 m3Principal measurements: 9 4.6 3.4 m (length width height)11 Take time and reflectA teahouse is a shelter for temporaryuse, built from selected materials thatare carefully connected. The entranceis small and low, and the room issmall with a low ceiling. Slip off yourshoes, stoop, sit down on a “tatami”mat and take part in a Japanese teaceremony you will feel calm andFig. 10. Kidney-shaped channel frame and positions of entrancesforget your sorrows.Fig. 11. Channel section with LEDsSteel Construction 4 (2011), No. 2125ReportsFig. 12. Mobile blower unitFig. 13. Blower unit connections at teahouse12 CreditsClient:Museum fr Angewandte Kunst, Frankfurt am Main, Prof. Schneider Concept and architectural design: KKAA Kengo Kuma & Associates, Tokyo, JapanStructural engineers, including design, form development, structural analy-sis, tender documents, pattern design, technical supervision:formTL, Radolfzell, Germany Membrane material:W. L. Gore Associates Membrane fabrication: Canobbio S.p.A,Castelnuovo Scrivia, ItalyBlower unit:N

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论