



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题3 函数的单调性函数的单调性1增函数、减函数一般地,设函数f (x)的定义域为I,区间DI,如果对于任意x1,x2D,且x1x2,则都有:(1)f(x)在区间D上是增函数f(x1)f(x2);(2)f(x)在区间D上是减函数f(x1)f(x2)2单调性、单调区间的定义若函数yf(x)在区间D上是增函数或减函数,则称函数yf(x)在这一区间上具有(严格的)单调性,区间D叫做yf(x)的单调区间3函数的最值前提设函数yf(x)的定义域为I,如果存在实数M满足条件对于任意的xI,都有f(x)M;存在x0I,使得f(x0)M对于任意的xI,都有f(x)M;存在x0I,使得f(x0)M结论M是yf(x)的最大值M是yf(x)的最小值1判断函数单调性的四种方法(1)定义法:取值、作差、变形、定号、下结论(2)复合法:同增异减,即内外函数的单调性相同时为增函数,不同时为减函数(3)图象法:如果f(x)是以图象形式给出的,或者f(x)的图象易作出,可由图象的直观性判断函数单调性(4)导数法:利用导函数的正负判断函数单调性2求函数最值的常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值(1)函数f(x)log2(x21)的单调递减区间为_(2)试讨论函数f(x)x(k0)的单调性【解析】(1)(,1)由x210得x1或x1,即函数f(x)的定义域为(,1)(1,)令tx21,因为ylog2t在t(0,)上为增函数,tx21在x(,1)上是减函数,所以函数f(x)log2(x21)的单调递减区间为(,1)考虑到函数f(x)x(k0)是奇函数,在关于原点对称的区间上具有相同的单调性,故在(,)上单调递增,在(,0)上单调递减综上,函数f(x)在(,)和(,)上单调递增,在(,0)和(0,)上单调递减.12分法二:f(x)1.2分令f(x)0得x2k,即x(,)或x(,),故函数的单调增区间为(,)和(,).6分令f(x)0得x2k,即x(,0)或x(0,),故函数的单调减区间为(,0)和(0,).10分故函数f(x)在(,)和(,)上单调递增,在(,0)和(0,)上单调递减. (1)(2017深圳二次调研)下列四个函数中,在定义域上不是单调函数的是()Ayx3ByCyDyx (2)函数f(x)log(x24)的单调递增区间是()A(0,)B(,0)C(2,)D(,2)【解析】D 由x240得x2或x2,所以函数f(x)的定义域为(,2)(2,),因为ylogt在定义域上是减函数,所以求原函数的单调递增区间,即求函数tx24的单调递减区间,可知所求区间为(,2)(3)已知f(x),x1,),且a1. 【导学号:31222026】(1)当a时,求函数f(x)的最小值;(2)若对任意x1,),f(x)0恒成立,试求实数a的取值范围【解析】(1)当a时,f(x)x2,f(x)10,x1,),即f(x)在1,)上是增函数,f(x)minf(1)12.4分(2)f(x)x2,x1,)法一:当a0时,f(x)在1,)内为增函数f(x)minf(1)a3.要使f(x)0在x1,)上恒成立,只需a30,3a0.7分当0a1时,f(x)在1,)内为增函数,f(x)minf(1)a3,a30,a3,0a1.综上所述,f(x)在1,)上恒大于零时,a的取值范围是(3,1.10分法二:f(x)x20,x1,x22xa0,8分a(x22x),而(x22x)在x1时取得最大值3,3a1,即a的取值范围为(3,1. 1下列函数中,定义域是R且为增函数的是()Ay2xByxCylog2xDy【解析】B由题知,只有y2x与yx的定义域为R,且只有yx在R上是增函数2若函数yax与y在(0,)上都是减函数,则yax2bx在(0,)上是() 【导学号:31222028】A增函数B减函数C先增后减D先减后增【解析】B由题意知,a0,b0,则0,从而函数yax2bx在(0,)上为减函数3函数f(x)ln(43xx2)的单调递减区间是()A. B.C. D.4(2017长春质检)已知函数f(x)|xa|在(,1)上是单调函数,则a的取值范围是()A(,1B(,1C1,)D1,)【解析】A因为函数f(x)在(,1)上是单调函数,所以a1,解得a1.5(2017衡水调研)已知函数f(x)若f(a)f(a)2f(1),则a的取值范围是()A1,0)B0,1C1,1D2,2【解析】C因为函数f(x)是偶函数,故f(a)f(a),原不等式等价于f(a)f(1),即f(|a|)f(1),而函数在0,)上单调递增,故|a|1,解得1a1.6(2017江苏常州一模)函数f(x)log2(x22)的值域为_7已知函数f(x)为R上的减函数,若mn,则f(m)_f(n);若ff(1),则实数x的取值范围是_【解析】(1,0)(0,1)由题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025北京市通州区漷县镇觅子店社区卫生服务中心招聘非在编护理人员2人模拟试卷及1套参考答案详解
- 2025广东佛山市南海区狮山镇横岗小学招聘1人考前自测高频考点模拟试题及参考答案详解1套
- 2025深圳商品房买卖合同
- 2025技术开发委托合同标准范本格式
- 2025杭州市社区工作者合同范本
- 2025年西电集团医院招聘(57人)模拟试卷(含答案详解)
- 2025年甘肃省嘉峪关市胜利路小学招聘公益性岗位人员模拟试卷及1套参考答案详解
- 2025广西物流职业技术学院公开招聘副高及以上职称人员37人模拟试卷及完整答案详解一套
- 2025年度合同制员工的合同范本
- 2025年淮北濉溪县现代农业投资发展有限责任公司招聘5人模拟试卷及1套参考答案详解
- 非标设备维护培训
- 带状疱疹护理课件
- 会计实务:浅谈农业专项资金审计的方式方法
- 呼吸功能障碍的支持
- 【MOOC】理解马克思-南京大学 中国大学慕课MOOC答案
- 《燃烧基础知识》课件
- 编织教材初中校本课程
- 高三家长会 携手共进-圆梦高考家长会 课件
- 检验医学尿常规课件
- 2024开发商与物业签订合同范本
- 中医基础理论之八纲辨证课件
评论
0/150
提交评论