第四课时向量的数乘(一).doc_第1页
第四课时向量的数乘(一).doc_第2页
第四课时向量的数乘(一).doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四课时 向量的数乘(一)教学目标:掌握实数与向量积的定义,理解实数与向量积的几何意义,掌握实数与向量的积的运算律,理解两个向量共线的条件,能够运用两向量共线条件判定两向量是否平行.教学重点:实数与向量积的定义;实数与向量积的运算律;教学难点:对向量共线的理解.教学过程:.复习回顾前面两节课,我们一起学习了向量加减法运算.这一节,我们将在加法运算基础上研究相同向量和的简便计算及其推广.讲授新课在代数运算中,aaa3a,故实数乘法可以看成是相同实数加法的简便计算方法,所以相同向量的求和运算也有类似的简便计算.已知非零向量a,我们作出aaa和(a)(a)(a).由图可知,aaa,我们把aaa记作3a,即3a,显然3a的方向与a的方向相同,3a的长度是a的长度的3倍,即3a3a. 同样,由图可知,(a)(a)(a),我们把(a)(a)(a)记作3a,即3a,显然3a的方向与a的方向相反,3a的长度是a的长度的3倍,即3a3a.上述过程推广后即为实数与向量的积.1.实数与向量的积实数与向量a的积是一个向量,记作a,其长度和方向规定如下:(1)aa(2)当0时, a与a同向;当0时, a与a反向;当0时, a0.根据实数与向量的积的定义,我们可以验证下面的运算律.2.实数与向量的积的运算律(1) (a)()a(2)()aaa(3) (ab)ab说明:对于运算律的验证要求学生通过作图来进行.3.向量b与非零向量a共线的充要条件是有且只有一个实数,使ba.说明:(1)推证过程引导学生自学;(2)可让学生思考把“非零向量”的“非零”去掉后,是否正确,目的是通过0与任意向量的平行来加强学生对于充要条件的认识.下面我们通过例题分析来进一步熟悉向量与实数积的定义、运算律及两向量共线的充要条件的应用.例1若3m2na,m3nb,其中a,b是已知向量,求m,n.分析:此题可把已知条件看作向量m、n的方程,通过方程组的求解获得m、n.解:记3m2nam3nb3得3m9n3b得11na3b.nab将代入有:mb3nab评述:在此题求解过程中,利用了实数与向量的积以及它所满足的交换律、结合律,从而解向量的二元一次方程组的方法与解实数的二元一次方程组的方法一致.例2凸四边形ABCD的边AD、BC的中点分别为E、F,求证 ().证法一:构造三角形,使EF作为三角形中位线,借助于三角形中位线定理解决.过点C在平面内作,则四边形ABGC是平行四边形,故F为AG中点.EF是ADG的中位线,EFDG,.而, ().证法二:创造相同起点,以建立向量间关系如图,连EB,EC,则有,又E是AD之中点,有0.即有;以与为邻边作平行四边形EBGC,则由F是BC之中点,可得F也是EG之中点. () ().课堂练习课本P66练习1,2,3,4.课时小结通过本节学习,要求大家掌握实数与向量的积的定义

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论