空间与轴对称问题有限元分析.ppt_第1页
空间与轴对称问题有限元分析.ppt_第2页
空间与轴对称问题有限元分析.ppt_第3页
空间与轴对称问题有限元分析.ppt_第4页
空间与轴对称问题有限元分析.ppt_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

空间及轴对称问题有限元 概述空间问题 四面体 六面体类 轴对称问题轴对称问题非轴对称荷载 概述 三个方向尺寸属于同一数量级 所受荷载或形体复杂 不可能像上一章那样简化成平面问题处理 这时必须按空间问题求解 与平面分析不同 空间有限元分析有如下两个困难 1 对空间物体进行离散化时不像平面问题那样直观 人工进行离散时很容易产生错误 2 未知量的数量剧增 建立网格自动生成前处理程序 采用高阶单元来提高单元精度 平面图形绕面内一轴旋转所产生的空间物体 称为轴对称物体 是一类特殊的空间问题 空间问题 1常应变四面体单元形函数 与平面三角形单元相对应 四面体单元内任一点可用 体积坐标 来表示 各子四面体体积 与三角形单元一样 体积坐标为Ti Vi V 三个是独立的 它有 本1 它0 总和1 的性质 四面体总体积 右旋体积正 剩下来的工作基本和三角形常应变单元类似 作业 自学单元列式内容 空间问题 2十结点 二次 四面体单元形函数 类似于平面六结点二次三角形单元 采用试凑法建立结点的形函数 为使N1满足本点为1 可得a 2 代回后得 N1 T1 2T1 1 余者类似 也可按如下通式得到 式中p为形函数阶次 分子为不通过i点的平面方程左端项 分母中括号内为i点体积坐标 请大家自行验证 空间问题 3形成四面体的对角线划分方法 先划分成六面体再分为四面体 1 六面体划分为5个四面体 A5型 1467间连6根对角线 空间问题 3形成四面体的对角线划分方法 1 六面体划分为5个四面体 B5型 2358间连6根对角线 相邻六面体必须一个为A5另一个为B5 共同点相对面对角线相互空间交叉 空间问题 3形成四面体的对角线划分方法 2 先划为五面体再划分为6个四面体 连47 76 636874 5673 4763 连23 25 632351 3562 3642 空间问题 3形成四面体的对角线划分方法 2 先划为五面体再划分为6个四面体 连35 52 633562 5673 2351 连47 46 633764 6874 3642 两种A6划分结果完全相同 空间问题 3形成四面体的对角线划分方法 2 先划为五面体再划分为6个四面体 连23 35 452453 4753 2351 连45 46 674562 5674 6874 空间问题 3形成四面体的对角线划分方法 2 先划为五面体再划分为6个四面体 连47 76 544753 5674 6874 连32 25 542351 4352 4562 两种B6划分结果也完全相同 作业 P 95给出了由六面体8个角点点号 按式 4 1 25 求A6和A5型四面体结点号的方法 请考虑B6和B5型的计算公式 空间问题 4六面体类单元的形函数 1 八结点单元 类似平面问题矩形线性单元 由试凑法可建立形函数如下 2 二十结点单元 和平面问题一样 基于试凑法 可以根据上述八结点低阶单元形函数构造各顶点形函数 作业 32结点三次单元 空间问题 5五面体类单元的形函数 1 试凑法建立六结点形函数 用于与六面体单元联合 解决边界形状不规则物体的分析 课堂练习 建立15结点五面体单元形函数 2 三维等参元列式 基本思想和平面问题一样 具体列式参看P 101 P 104 轴对称问题 工程中有一类结构 它们的几何形状 约束条件及作用的荷载都对称于某一固定轴 可视为子午面内平面物体绕轴旋转一周的结果 其力学分析称为轴对称问题 典型例子为烟囱 储液罐等受恒载作用 1离散化 由于可视为子午面内平面物体绕轴旋转一周的结果 2应力与应变 对轴对称问题进行分析一般取柱坐标系 对称轴为Z轴 径向为r轴 环向为 轴 因此轴对称问题分析可在子午面内划分单元 实际是取子午面内图形绕对称轴旋转所得 圆环形单元 对物体进行离散 因此可用的单元与平面问题一样 轴对称问题 在柱坐标下轴对称问题的几何方程为 根据具体单元 代入所建立的位移模式 即可得应变矩阵B 轴向位移 径向位移 教材上有推导的示意图 参考弹性力学 由于算子中有1 r 所以三角形环单元B不再是常数矩阵 轴对称问题 根据具体单元 即可得应变 应力矩阵等 D 0 式中 对称 对线弹性问题 在上述应变分量条件下 物理方程为 以三角形环单元为例 其位移模式为 轴对称问题 根据轴对称问题的算子矩阵 单元应变矩阵为 应力矩阵 由于应变矩阵的特点 应力分量中除剪应力为常量外 其余三项正应力均不再是常数 轴对称问题 由于B中含有坐标变量 因此积分运算较平面问题复杂 精确积分参见Zienkiewicz FiniteElementMethod 5thEd 2000 教材上对三角形环单元具体介绍了ke和FEe的有关计算过程 请自学相关内容 单元刚度矩阵仍可按照平面问题的方法建立 但需注意体积积分应在整个环上进行 实践证明采用近似积分也能达到一定的精度 具体对于三角形环单元用形心处坐标代替应变矩阵中的坐标变量 如何进一步改进积分精度 轴对称问题等参元分析 教材上P 111具体给出了单刚和等效荷载结果 单元位移场 单元描述 圆柱坐标系下雅可比矩阵 应变矩阵 如果轴对称体上作用的非轴对称荷载 如烟囱上作用的风荷载及地震荷载等 此时结构的位移 应变和应力将不再是轴对称的 需按照空间问题求解 轴对称问题非轴对称荷载 此时求解费用将大大增加 如何进行简化 采用半解析有限元方法 将此类问题化为若干轴对称问题叠加进行求解 此处将轴对称体上作用的一般荷载P r z 沿三个坐标轴方向分解 并沿 方向展开成付氏级数 轴对称 对称 反对称 扭转 轴对称问题非轴对称荷载 非轴对称荷载的分解 R0 Z0与 无关 是轴对称荷载 T0与 无关 沿 方向 是扭转荷载 Ri r z cosi 等是关于 0平面的对称荷载 Ri r z sini 等是关于 0平面的反对称荷载 对称 反对称 轴对称问题非轴对称荷载 将位移作类似的分解 u0 w0轴对称位移 v0扭转位移 ui r z cosi wi r z cosi vi r z sini 是关于 0平面对称的位移 ui r z cosi wi r z cosi vi r z cosi 是关于 0平面反对称的位移 轴对称 对称 反对称 扭转 轴对称问题非轴对称荷载 对称荷载作用下的计算 对称荷载引起的位移是对称的 轴对称问题非轴对称荷载 由于荷载非轴对称 因此一点的应变分量将有6项 采用虚位移原理或势能原理建立单元的刚度矩阵与等效荷载矩阵 公式显式表达式见教材P 115 116 4 4 11 4 4 4 18 基于三角函数的正交性 单元分析得到的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论