




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学专业英语线性方程组应数121 陈珍妮 12453101英文原稿:System of Linear equationsAs we all know,Linear equations are important components of linear algebra, and in real life, there is a wide range of production applications,and it plays an important role in electronic engineering, software development, personnel management, transportation, etc. There are different ways in different types of linear equations, mainly Cramers rule, matrix elimination method.A general system ofmlinear equations withnunknowns can be written asHereare the unknowns,are the coefficients of the system, andare the constant terms.Matrix equation The vector equation is equivalent to amatrixequation of the form,whereAis anmnmatrix,xis acolumn vectorwithnentries, andbis a column vector withmentries.The number of vectors in a basis is now expressed as therankof the matrix.The main methods:(1)Elimination of variables The simplest method for solving a system of linear equations is to repeatedly eliminate variables. This method can be described as follows:1. In the first equation, solve for one of the variables in terms of the others.2. Substitute this expression into the remaining equations. This yields a system of equations with one fewer equation and one fewer unknown.3. Continue until you have reduced the system to a single linear equation.4. Solve this equation, and then back-substitute until the entire solution is found.For example, consider the following system:Solving the first equation forxgivesx= 5 + 2z 3y, and plugging this into the second and third equation yieldsSolving the first of these equations foryyieldsy= 2 + 3z, and plugging this into the second equation yieldsz= 2. We now have:Substitutingz= 2into the second equation givesy= 8, and substitutingz= 2andy= 8into the first equation yieldsx= 15. Therefore, the solution is(x,y,z) = (15, 8, 2).(2)Row reduction Inrow reduction, the linear system is represented as anaugmented matrix: This matrix is then modified usingelementary row operationsuntil it reachesreduced row echelon form. There are three types of elementary row operations:Type 1: Swap the positions of two rows.Type 2: Multiply a row by a nonzeroscalar.Type 3: Add to one row a scalar multiple of another.Because these operations are reversible, the augmented matrix produced always represents a linear system that is equivalent to the original.The following computation shows Gauss-Jordan elimination applied to the matrix above:The last matrix is in reduced row echelon form, and represents the systemx= 15,y= 8,z= 2. (3)Cramers rule Cramers ruleis an explicit formula for the solution of a system of linear equations, with each variable given by a quotient of twodeterminants. For example, the solution to the systemis given byFor each variable, the denominator is the determinant of the matrix of coefficients, while the numerator is the determinant of a matrix in which one column has been replaced by the vector of constant terms.Though Cramers rule is important theoretically, it has little practical value for large matrices, since the computation of large determinants is somewhat cumbersome. Further, Cramers rule has very poor numerical properties, making it unsuitable for solving even small systems, unless the operations are performed in rational arithmetic with unbounded precision.(4)Matrix solution If the equation system is expressed in the matrix form, the entire solution set can also be expressed in matrix form. If the matrixAis square (hasmrows andn=m columns) and has full rank (allmrows are independent), then the system has a unique solution given by whereis theinverseofA. More generally, regardless of whetherm=nor not and regardless of the rank ofA, all solutions (if any exist) are given using theMoore-Penrose pseudo-inverseofA, denoted, as follows: ,whereis a vector of free parameters that ranges over all possiblen1 vectors. A necessary and sufficient condition for any solution(s) to exist is that the potential solution obtained usingsatisfy that is,thatIf this condition does not hold, the equation system is inconsistent and has no solution. If the condition holds, the system is consistent and at least one solution exists. For example, in the above-mentioned case in whichAis square and of full rank,simply equalsand the general solution equation simplifies to as previously stated, wherehas completely dropped out of the solution, leaving only a single solution.中文翻译:线性方程组众所周知,线性方程组是线性代数的重要组成部分,它在现实生活中有广泛的生产应用,并且在电子工程、 软件开发、 人事管理、 运输等也扮演重要的角色。不同类型的线性方程组有不同的方法,主要方法有克莱姆法则,矩阵消元法。由n个未知数、m个线性方程组成的方程组一般形式可以写为这里是未知数,是方程组的系数,是常数项。矩阵方程向量方程相当于一个形如的矩阵方程,其中 A 是 m n 矩阵,x 是n 项的一个列向量与和 b 是一个m项的一个列向量。在向量基底上的数量现在被表示为矩阵的秩。主要方法:(1)消元法用于求解线性方程系统的最简单的方法是反复消除变量。该方法可以描述为如下:1、在第一个方程,其中一个变量用其他变量表示。2、把该表达式代入剩余的方程。这就产生少一个方程和少一个未知数的方程组。3、继续,直到你的系统减少为一个线性方程4、解这个方程,然后返回代入,直到整个答案找到。例如,考虑下面的方程组:解决第一个方程对于x给出x= 5+2 Z - 3Y,并把它代入第二和第三方程产生解决第一个这些方程对于Y 产生Y=2+3Z,并把它代入到这第二个方程产生Z =2。我们现在有代Z = 2到第二方程给出:Y =8,而把Z = 2和y= 8代入到第一方程产生x= -15。因此,该答案是(x,Y,Z)=(-15,8,2)。(2)行变换在行变换中,线性方程组被表示为增广矩阵然后,这个矩阵用初等行变换修改,直到达到最简行阶梯形式的。这样有三种类型的初等行操作:1、 类型1:交换两行的位置2、 类型2:用一个非零标量乘以一排。3、 类型3:把另一个标量的倍数添加到一行上。因为这些操作是可逆的,产生的增广矩阵总是表示的线性方程组,所以它等于最初的。下面的计算示出了高斯消去法应用到上面的矩阵:最后一个矩阵是最简行阶梯形式,并代表方程组x=-15,Y =8,Z =2。(3)克莱姆法则对于线性方程组的解来说,克莱姆公式是一个明确的公式,即由两个决定因素的商得出的每个变量。例如,将该答案在方程组中由下式得出。对于每个变量,分母是系数矩阵的行列式,而分子是一个矩阵的行列式,其中一列是已被取代的常数项向量。虽然克莱姆法则是很重要的理论,但它对于大型矩阵的实用价值不大,因为大决定因素的计算是有点麻烦的。此外,克莱姆法则具有非常差的数值特性,使得它不适合解决哪怕是很小的方程组,除非操作都是在理性的计算和无限精度下进行。(4)矩阵方法如果该方程组表示在矩阵形式中,整个解集也可以表示为矩阵形式。如果矩阵A是正方形(有m行n列)那么它就是满秩的(全部m行是独
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- JJF(石化)062-2023总烃浓度在线监测仪(氢火焰离子化法)校准规范
- 初中数学第1课时++有理数的乘法课件+北师大版七年级数学上册++
- 暑假培优练:交变电流(学生版)-2025人教版新高二物理暑假专项提升
- 新解读《GB-T 16950-2014地质岩心钻探钻具》
- 突破离子方程式书写正误判断中的“六大陷阱”-高考化学考点复习(解析版)
- 重庆中级课件
- 《英语演讲与辩论》课程介绍与教学大纲
- 社会科学研究方法 课件 第二章 研究的类型
- 蓝牙技术简介
- 老年人应急安全知识培训课件
- 【新课标】人音版五年级上册第一单元 朝夕 大单元整体教学设计
- 自然保护区管理中的生态系统恢复策略
- 试车跑道专项方案
- 2024年交管12123学法减分试题题库附答案
- 2024年湖南省长沙住房公积金管理中心招聘历年高频难、易点(公共基础测验共200题含答案解析)模拟试卷
- KA-T 20.1-2024 非煤矿山建设项目安全设施设计编写提纲 第1部分:金属非金属地下矿山建设项目安全设施设计编写提纲
- 微积分(第三版)课件:常微分方程
- (高清版)DZT 0079-2015 固体矿产勘查地质资料综合整理综合研究技术要求
- 钝感力读后感课件
- (完整word版)软件投标书模板
- 甲醇制氢生产装置设计
评论
0/150
提交评论