1理解有理数加法的意义.doc_第1页
1理解有理数加法的意义.doc_第2页
1理解有理数加法的意义.doc_第3页
1理解有理数加法的意义.doc_第4页
1理解有理数加法的意义.doc_第5页
免费预览已结束,剩余3页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;2能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别;3三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程;4通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力;5本节课通过行程问题说明有理数的加法法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。教学建议(一)重点、难点分析本节教学的重点是依据有理数的加法法则熟练进行有理数的加法运算。难点是有理数的加法法则的理解。(1)加法法则本身是一种规定,教材通过行程问题让学生了解法则的合理性。(2)具体运算时,应先判别题目属于运算法则中的哪个类型,是同号相加、异号相加、还是与0相加。(3)如果是同号相加,取相同的符号,并把绝对值相加。如果是异号两数相加,应先判别绝对值的大小关系,如果绝对值相等,则和为0;如果绝对值不相等,则和的符号取绝对值较大的加数的符号,和的绝对值就是较大的绝对值与较小的绝对值的差。一个数与0相加,仍得这个数。(二)知识结构(三)教法建议1对于基础比较差的同学,在学习新课以前可以适当复习小学中算术运算以及正负数、相反数、绝对值等知识。2有理数的加法法则是规定的,而教材开始部分的行程问题是为了说明加法法则的合理性。3应强调加法交换律“abba”中字母a、b的任意性。4计算三个或三个以上的加法算式,应建议学生养成良好的运算习惯。不要盲目动手,应该先仔细观察式子的特点,深刻认识加数间的相互关系,找到合理的运算步骤,再适当运用加法交换律和结合律可以使加法运算更为简化。5可以给出一些类似“两数之和必大于任何一个加数”的判断题,以明确由于负数参与加法运算,一些算术加法中的正确结论在有理数加法运算中未必也成立。6在探讨导出有理数的加法法则的行程问题时,可以尝试发挥多媒体教学的作用。用动画演示人或物体在同一直线上两次运动的过程,让学生更好的理解有理数运算法则。教学设计示例有理数的加法(第一课时)教学目的1.使学生理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算2.通过有理数的加法运算,培养学生的运算能力.教学重点与难点重点:熟练应用有理数的加法法则进行加法运算难点:有理数的加法法则的理解教学过程(找教案?上无忧教师网!25万份资源,完全免费提供!)(一)复习提问1.有理数是怎么分类的?2.有理数的绝对值是怎么定义的?一个有理数的绝对值的几何意义是什么?3.有理数大小比较是怎么规定的?下列各组数中,哪一个较大?利用数轴说明?-3与-2;|3|与|-3|;|-3|与0;-2与|+1|;-|+4|与|-3|(二)引入新课在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算.引入负数之后,这些运算法则将是怎样的呢?我们先来学有理数的加法运算(三)进行新课 有理数的加法(板书课题)例1 如图所示,某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?两次行走后距原点0为8米,应该用加法为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:1.同号两数相加(1)某人向东走5米,再向东走3米,两次一共走了多少米?这是求两次行走的路程的和5+38用数轴表示如图从数轴上表明,两次行走后在原点0的东边.离开原点的距离是8米.因此两次一共向东走了8米可见,正数加正数,其和仍是正数,和的绝对值等于这两个加数的绝对值的和(2)某人向西走5米,再向西走3米,两次一共向东走了多少米?显然,两次一共向西走了8米(-5)+(-3)-8用数轴表示如图从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米.因此两次一共向东走了-8米可见,负数加负数,其和仍是负数,和的绝对值也是等于两个加数的绝对值的和总之,同号两数相加,取相同的符号,并把绝对值相加例如,(-4)+(-5),同号两数相加(-4)+(-5)-( ),取相同的符号4+59把绝对值相加 (-4)+(-5)-9口答练习:(1)举例说明算式7+9的实际意义?(2)(-20)+(-13)?(3)2.异号两数相加(1)某人向东走5米,再向西走5米,两次一共向东走了多少米?由数轴上表明,两次行走后,又回到了原点,两次一共向东走了0米5+(-5)0可知,互为相反数的两个数相加,和为零(2)某人向东走5米,再向西走3米,两次一共向东走了多少米?由数轴上表明,两次行走后在原点o的东边,离开原点的距离是2米.因此,两次一共向东走了2米就是 5+(-3)2(3)某人向东走3米,再向西走5米,两次一共向东走了多少米?由数轴上表明,两次行走后在原点o的西边,离开原点的距离是2米.因此,两次一共向东走了-2米就是 3+(-5)-2请同学们想一想,异号两数相加的法则是怎么规定的?强调和的符号是如何确定的?和的绝对值如何确定?最后归纳绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0例如(-8)+5绝对值不相等的异号两数相加85(-8)+5-( )取绝对值较大的加数符号8-53 用较大的绝对值减去较小的绝对值(-8)+5-3口答练习用算式表示:温度由-4上升7,达到什么温度(-4)+73()3一个数和零相加(1)某人向东走5米,再向东走0米,两次一共向东走了多少米?显然,5+05.结果向东走了5米(2)某人向西走5米,再向东走0米,两次一共向东走了多少米?容易得出:(-5)+0-5.结果向东走了-5米,即向西走了5米请同学们把(1)、(2)画出图来由(1),(2)得出:一个数同0相加,仍得这个数总结有理数加法的三个法则.学生看书,引导他们看有理数加法运算的三种情况有理数加法运算的三种情况:特例:两个互为相反数相加;(3)一个数和零相加每种运算的法则强调:(1)确定和的符号;(2)确定和的绝对值的方法(四)例题分析例1 计算(-3)+(-9)分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+912)(强调相同、相加的特征)解:(-3)+(-9)-12例2分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对值.(强调“两个较大”“一个较小”)解:解题时,先确定和的符号,后计算和的绝对值(五)巩固练习1.计算(口答)(1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);(5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;2.计算(1)5+(-22); (2)(-1.3)+(-8)(3)(-0.9)+1.5; (4)2.7+(-3.5)探究活动题目 (1)在1,2,3,4四个数的前面添加正号或负号,使它们的和为0;(2)在1,2,3,11,12十二个数的前面添加正号或负号,使它们的和为零;(3)在1,2,3,4,99,100一百个数的前面添加正号或负号,使它们的和为0; (4) 在解决这个问题的过程中,你能总结出一些什么数学规律?参考答案 我们不妨不妨以第二问为例探讨,比如,在12,11,10,5这四个数的前面添加负号,则这12个数的和是:1211109876543212现在我们将各数的符号加以调整,考虑到将一个正数变号,其和就要减少这个正数的两倍,因此可得到两个(明显的)解答:(1)得1变为1,有1211109876543210; (2)将(+6-5)变为-(6-5),有-12-11-10+9+8+7-6+5+4+3+2+10又如,在11,10,8,7,5这五个数的前面添加负号,得1211109876543214,我们就有多种调整的方法,如将8与6变号,有1211109876543210 经过几次试验,我们发现了规律:欲使十二个数的和为零,其中正数的和的绝对值与负数的和的绝对值必须相等但12345678910111278因此我们应该使各正数的和的绝对值与各负数的和的绝对值均为为了简便起见,我们把式所表示的一个解答记为(12,11,10,5,1),那么,两式所表示的解答就分别记为(12,11,10,6)与(11,10,7,6,5)同时我们还发现:如果(12,11,10,5,1)是一个解答,那么(9,8,7,6,4,3,2)也必定是一个解答同样,对应于,两式,还分别有另两个解答:(9,8,7,5,4,3,2,1)与(12,9,8

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论