已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
柯西不等式的证明及应用(河西学院数学系01(2)班 甘肃张掖 734000)摘要:柯西不等式是一个非常重要的不等式,灵活巧妙的应用它,可以使一些较为困难的问题迎刃而解。本文在证明不等式,解三角形相关问题,求函数最值,解方程等问题的应用方面给出几个例子。关键词:柯西不等式 证明 应用 中图分类号: O178 Identification and application of Cauchy inequalityChen Bo(department of mathematics , Hexi university zhangye gansu 734000)Abstract: Cauchy-inequality is a very important in equation, flexible ingenious application it, can make some comparatively difficult problems easily solved . This text prove inequality, solve triangle relevant problem, is it worth most to ask, the application which solves such questions as the equation ,etc. provides several examples.Keyword:inequation prove application柯西(Cauchy)不等式 等号当且仅当或时成立(k为常数,)现将它的证明介绍如下:证明1:构造二次函数 = 恒成立即当且仅当 即时等号成立证明(2)数学归纳法 (1)当时 左式= 右式=显然 左式=右式当 时, 右式 右式 仅当即 即时等号成立故时 不等式成立 (2)假设时,不等式成立即 当 ,k为常数, 或时等号成立设 则 当 ,k为常数, 或时等号成立即 时不等式成立综合(1)(2)可知不等式成立柯西不等式是一个非常重要的不等式,灵活巧妙的应用运用它,可以使一些较为困难的问题迎刃而解,这个不等式结构和谐,应用灵活广泛,利用柯西不等式可处理以下问题:1) 证明相关命题例1 用柯西不等式推导点到直线的距离公式。 已知点及直线 设点p是直线上的任意一点, 则 (1) (2)点两点间的距离就是点到直线的距离,求(2)式有最小值,有由(1)(2)得: 即 (3)当且仅当 (3)式取等号 即点到直线的距离公式即2) 证明不等式例2 已知正数满足 证明 证明:利用柯西不等式 又因为 在此不等式两边同乘以2,再加上得:故3) 解三角形的相关问题例3 设是内的一点,是到三边的距离,是外接圆的半径,证明证明:由柯西不等式得,记为的面积,则故不等式成立。4) 求最值例4已知实数满足, 试求的最值 解:由柯西不等式得,有即由条件可得, 解得,当且仅当 时等号成立,代入时, 时 5)利用柯西不等式解方程例5在实数集内解方程解:由柯西不等式,得 又即不等式中只有等号成立从而由柯西不等式中等号成立的条件,得它与联立,可得 6)用柯西不等式解释样本线性相关系数在概率论与数理统计一书中,在线性回归中,有样本相关系数,并指出且越接近于1,相关程度越大,越接近于0,则相关程度越小。现在可用柯西不等式解释样本线性相关系数。现记,则,由柯西不等式有,当时,此时,为常数。点 均在直线上,当时,即而为常数。此时,此时,为常数点均在直线附近,所以越接近于1,相关程度越大当时,不具备上述特征,从而,找不到合适的常数,使得点都在直线附近。所以,越接近于0,则相关程度越小。致谢:在本文的写作过程中,得到了马统一老师的精心指导,在此表示衷心的感谢。 参考文献: 柯西不等式的微小改动 数学通报 2002 第三期 柯西不等式与排序不等式 南山 湖南教育出版社 普通高中解析几何 高等教育出版社1990-年全国统一考试 数学试卷李永
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 股权出资协议合同样本
- 自动化培训合同协议书
- 装修公司违约合同范本
- 设计制作外包合同范本
- 豪车典当租赁合同范本
- 购房合同低价保密协议
- 2020-2025年监理工程师之土木建筑目标控制强化训练试卷B卷附答案
- 2025年一级建造师之一建港口与航道工程实务强化训练试卷B卷附答案
- 人教版八年级上册七单元《红星照耀中国》测试卷及答案
- “国潮”形象塑造研究-以小米为例
- 袋式除尘器日常点检表
- DB21T 3782-2023 装配式混凝土建筑保温结构一体化外墙应用技术规程
- 教师资格面试-75篇结构化逐字稿
- 小学道德与法治-垃圾去哪儿教学设计学情分析教材分析课后反思
- 广东省普通高中学生档案
- 幼儿绘本阅读与指导智慧树知到答案章节测试2023年河北正定师范高等专科学校
- 《学习新思想 做好接班人》班会课件
- GB 1886.358-2022食品安全国家标准食品添加剂磷脂
- GB 17498.2-2008固定式健身器材第2部分:力量型训练器材附加的特殊安全要求和试验方法
- 《船舶结构与货运》教学课件-02船体结构
- 年产12000吨水合肼(100%)项目环评报告书
评论
0/150
提交评论