数据与知识工程1.ppt_第1页
数据与知识工程1.ppt_第2页
数据与知识工程1.ppt_第3页
数据与知识工程1.ppt_第4页
数据与知识工程1.ppt_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

教师 常亮E mail changl 办公室电话 2291071手机数据与知识工程 欢迎参加 本课程的开设背景 智能 智能行为依赖于知识知识 是构成智能的基础把有关信息关联在一起形成的信息结构由信息提炼出来的产物 反映了一些基本的规律信息 计算学科 对描述和变换信息的算法过程进行的系统研究 收信人事先不知道的报道 辞海 信息就是信息 不是物质 也不是能量 NorbertWiener 数据的语义数据 信息的载体和表示对于计算机而言 信息处理就是数据处理 本课程的开设背景 智能 智能行为依赖于知识知识 把有关信息关联在一起形成的信息结构由信息提炼出来的产物 反映了一些基本的规律是构成智能的基础信息 数据的语义收信人事先不知道的报道 辞海 信息就是信息 不是物质 也不是能量 NorbertWiener 计算学科 对描述和变换信息的算法过程进行的系统研究 数据 信息的载体和表示对于计算机而言 信息处理就是数据处理 本课程的开设背景 信息时代 知识时代农业社会 工业 机械社会 由机械化 电气化和自动化带来的人类体力扩展的结果 机械社会 信息 知识社会 由信息化 网络化和智能化带来的人类智力扩展的结果 一个标志 万维网 Web 的普及信息化和网络化带来的形形色色的海量信息和内容理解问题 向计算机科学和人工智能提出了艰巨的挑战 语义WebWeb技术语义 本体 逻辑 知识表示与知识推理 数据挖掘 知识发现 本课程的目的 了解人工智能领域关于知识表示 知识推理 知识发现的研究历史 掌握典型的知识表示方法 尤其是基于一阶谓词逻辑和基于描述逻辑的知识表示方法 掌握典型的知识推理方法 尤其是基于消解原理的推理方法和基于Tableau的推理方法 掌握典型的知识发现方法 了解语义Web的基本思想 技术现状和发展趋势 了解Web知识表示模型和语言 主要包括RDF OWL RIF和SPARQL 了解语义Web背景下关于知识表示 知识推理 和知识发现的研究现状 本课程的内容 基于一阶谓词逻辑 FOL 的知识表示和推理基于FOL的知识表示基于消解法的知识推理基于tableau算法的知识推理Horn逻辑与产生式系统Horn逻辑逻辑程序设计产生式系统基于描述逻辑 DL 的知识表示和推理基于DL的知识表示基于tableau算法的知识推理非单调知识表示和推理CWA 限制逻辑 默认逻辑 自认知逻辑对动作的表示 推理以及规划STRIPS系统 情景演算 流演算 PDL 知识表示能力vs 推理能力tradeoff 本课程的内容 数据挖掘与知识发现基于证据理论的数据挖掘方法基于神经网络的数据挖掘方法基于遗传算法的数据挖掘方法基于粗糙集的数据挖掘方法其他数据挖掘方法KDD的挖掘模式关联模式分类模式聚类模式回归模式序列模式 本课程的内容 语义Web的研究路线资源描述框架RDFWeb本体语言OWLWeb规则标记语言RIFWeb查询语言SPARQL典型应用Web服务软件配置 产品协同制造信息系统知识共享 协同工作 语义Web背景下知识表示 知识推理和知识发现 教材BrachmanR LevesqueH KnowledgeRepresentationandReasoning MorganKaufmannPress 2004 AntoniouG HarmelenF ASemanticWebPrimer SecondEdition Cambridge Mass MITPress 2008 AntoniouG HarmelenF 著 陈小平等译 语义网基础教程 第1版 机械工业出版社 2008 胡运发 数据与知识工程导论 清华大学出版社 2003 参考书1 BaaderF CalvaneseD McGuinnessD NardiD andPatel SchneiderP F TheDescriptionLogicHandbook Theory ImplementationandApplications CambridgeUniversityPress 2003 2 BellJ L MachoverM ACourseinMathematicalLogic North HollandPublishingCompany 1977 3 JiaweiHan MichelineKamber DataMining ConceptsandTechinques SecondEdition 机械工业出版社 2007 教材及参考书 作者介绍 RonBrachmanPh D 1977HarvardACMFellowPresidentofAAAI 2003 雅虎全球研究运营副总裁HectorLevesquePh D1981 UniversityofTorontoConferenceChairofIJCAI 2001 founderfarthersofDLFranzBaaderChairforAutomataTheoryoftheInstituteforTheoreticalComputerScienceFacultyofComputerScienceatTUDresden 课程要求 按时到课 重视课堂学习 对布置的思考题和讨论题进行认真准备 按进度完成平时作业 评分方式 总评成绩 平时成绩 20 期末考试成绩 80 平时成绩 课堂主题报告 课堂讨论重视课堂讨论使自己的疑问得到及时解答可以帮助有相似疑问的同学可以使教师及时了解教学效果在讨论中产生有价值的学术火花多动笔 到证明的第一现场去 第1部分概述 主要内容 人工智能及其三个学派符号主义本领域的杰出人物本领域的顶级国际会议知识表示与知识推理数据挖掘与知识发现 图灵和图灵测试 阿兰 麦席森 图灵 AlanMathisonTuring 1912 6 23 1954 6 7英国数学家 逻辑学家1936年 OnComputableNumbers withanApplicationtotheEntscheidungsproblem 论可计算数及其在判定问题上的应用 图灵机 TuringMachine 停机问题vs FOL的不可判定问题1950年 ComputingMachineryandIntelligence 计算机器与智能 图灵测试 TuringTest 人工智能之父 人工智能的诞生 Dartmouth会议 1956年 美国的DartmouthCollege 一个长达2个月的暑期研讨班 与会者有包括C Shannon在内的数学家 逻辑学家 认知学家 心理学家 神经生理学家 计算机科学家等10人 MarvinMinsky的神经网络模拟器 JohnMcCarthy的搜索法 以及HerbertSimon和AllenNewell的 逻辑理论家 成为会上的3个亮点 分别讨论如何穿过迷宫 如何搜索推理 以及如何证明数学定理 在会议上 JohnMcCarthy正式提出 人工智能 ArtificialIntelligence 这一术语 人工智能是相对人的自然智能而言 即用人工的方法和技术 模仿 延伸和扩展人的智能 研制具有感知 推理 学习 联想 决策等思维活动的计算系统 解决需要人类专家才能处理的复杂问题 人工智能的发展 1958年 Newell和Simon的四个预测十年内 计算机将成为世界象棋冠军十年内 计算机将发现或证明有意义的数学定理十年内 计算机将能谱写优美的乐曲十年内 计算机将能实现大多数的心理学理论1959年 MITAILab正式成立 Minsky和McCarthy 在专家系统 机器人 自然语言处理 知识工程等领域取得了长足的发展 1981年 日本政府宣布日本五代机 first generationcomputer 计划 即智能计算机 1992年 日本政府宣布五代机计划失败 人工智能进入一个低谷 随着信息 知识社会的到来 人工智能领域再次兴旺起来 Gartner技术成熟度曲线 深蓝 与卡斯帕罗夫之战 1997年5月初 IBM公司研制的并行计算机 深蓝 与国际象棋冠军卡斯帕罗夫交战 以两胜一负三平获胜 深蓝 由256个专为国际象棋比赛设计的微处理器组成 每秒可计算2亿步棋 另一场人机大战 1997年 深蓝 在棋盘上击败国际象棋大师卡斯帕罗夫 本质是使用穷举战略 每秒计算2亿次可能的 招数 在相同的时间内 卡斯帕罗夫只能粗略地计划两步 在其后的10年里 计算能力猛增 到2007年 那台1 4吨的巨型计算机的处理能力已经可以放进一个大拇指盖大小的 细胞 Cell 微处理器中 在这十年内 晶体管数量已经从英特尔奔腾 上的750万个跳跃到 细胞 上的2 34亿个 但是要让计算机理解人类语言 像人类一样思考比下棋难多了 更高级别的挑战 沃森 参战 危险边缘 Jeopardy 危险边缘 Jeopardy 美国家喻户晓的电视智力竞赛节目 1964年创立 竞赛问题涉及地理 政治 历史 体育 娱乐等 2011年2月14 16日 IBM沃森参加了 危险边缘 电视节目的竞赛 战胜了该节目有史以来最优秀的两位人类冠军KenJennings和BradRutter IBM 沃森 系统 以IBM创始人托马斯 J 沃森的名字命名 2006年开始设计 是由90台IBM750服务器组成的群集系统 每台服务器采用Power7处理器 8核芯片 每核4个线程 相当于有2880个核在运行 内存是16TB的RAM 采用的软件有SUSELinuxEnterpriseServer11操作系统 IBMDeepQA软件 ApacheUIMA 非结构化信息管理体系结构 框架等 IBM 沃森 系统 使用了上百种的技术来分析自然语言 识别资源 寻找并产生假设 寻找证据并评分 对假设进行聚集和分级 因此它是专门设计的 具有学习能力的机器 能储存大量信息 相当于100万本书籍和2亿页资料 还可以从经验中学习如何提高性能 能使用自然语言回答问题 世界各地的研究人员历时四年共同完成了这个系统 应用前景广泛 可以高速分析大量数据 用来帮助政府部门解答公众疑问 帮助医生评估药物疗效 核心技术 自然语言处理 机器学习 LeslieGabrielValiant 1949 2010年图灵奖获得者英国皇家学会会员 美国科学院院士哈佛大学教授主要贡献 机器学习领域 提出PAC模型使20世纪50年代诞生的机器学习领域第一次有了坚实的数学基础 从而清除了学科发展的障碍 这不仅对人工智能学科领域产生了巨大影响 而且促使IBM公司制造出沃森 Watson 这样智能而神奇的机器 计算复杂性领域 表明即使可满足赋值数很小 SAT这个NP完备问题仍然是很难的问题 计算神经学领域 为大脑设计了一个数学模型 并将它与复杂的认知功能建立了关联 人工智能的不同学派 符号主义连接主义行为主义 符号主义 symbolism 又称为逻辑主义 心理学派 计算机学派以Newell和Simon提出的物理符号系统假说 physicalsymbolsystemhypothesis 为基础 符号主义认为 人的认知基元是符号 认知过程就是符号操作过程 人是一个物理符号系统 计算机也是一个物理符号系统 因此就能够用计算机来模拟人的智能行为 即用计算机的符号操作来模拟人的认知过程 知识是信息的一种形式 是构成智能的基础 人工智能的核心问题是知识表示 知识推理和知识运用 知识可以用符号表示 也可以用符号进行推理 因而可能建立起基于知识的人类智能和机器智能的统一理论体系 符号主义曾长期一支独秀 为人工智能的发展作出了重要贡献 在其他学派出现之后 符号主义仍然是人工智能的主流学派 连接主义 联结主义 connectionism 又称为仿生学派 生理学派其原理主要是神经网络以及神经网络间的连接机制和学习算法 连接主义认为 人工智能源于仿生学 特别是人脑模型的研究 认为思维的基元是神经元 把智能理解为相互联结的神经元竞争与协作的结果 连接主义研究非程序的 适应性的 大脑风格的信息处理的本质和能力 人们也称它为神经计算 20世纪60 70年代 以感知机为代表的脑模型的研究 1986年 Rumelhart等提出多层网络中的反向传播算法 BP算法 此后 连接主义势头大振 近年来迅速发展 大量的神经网络的机理 模型 算法不断地涌现出来 行为主义 actionism 又称为进化主义 控制论学派其原理为控制论以及感知 动作型控制模型 行为主义强调智能系统与环境的交互 从运行的环境中获取信息 感知 通过自己的动作对环境施加影响 行为主义认为 智能只能在与环境的交互作用中表现出来 认为智能不需要知识 不需要表示 不需要推理 弱AIvs 强AI 美国哲学家约翰 西尔勒 J R Searle 根据人们在研究人工智能模拟人类认知能力方面的不同观点 将有关人工智能的研究划分为强人工智能 StrongArtificialIntelligence 简称强AI 和弱人工智能 SoftArtificialIntelligence 简称弱AI 两个派别 人工草皮 人工调料在研究意识方面 弱AI认为计算机的主要价值在于它为我们提供了一个强大的工具 强AI的观点则是 计算机不仅是一个工具 形式化的计算机是具有意识的 1980年 西尔勒设计了一个 中文屋子 ChineseRoom 的假想试验来反驳强AI的观点 智能科学 脑科学 认知科学 人工智能 人脑是巨系统神经元 胞体 突起 树突 轴突 智能科学 脑科学 认知科学 人工智能 人脑是巨系统神经元 胞体 突起 树突 轴突 整个人脑神经元的数量约为1011 千亿 一只成年老鼠的脑由2100万个称为神经元在大脑皮层的一个神经元上 突触的数目可达3万以上 整个脑内突触的数目约在1014 1015 百万亿 千万亿 之间 智能科学 脑科学 认知科学 人工智能 2011年8月18日 美国IBM公司 可以模拟人脑处理信息方式的认知计算机芯片 已研发出两个芯片 没有任何生物成分 完全由硅电路组成 每个都含有256个 神经元 其中一块有超过26万个可控制的 神经突触 另一块有6万多个学习型 神经突触 在这两块芯片的基础上 研究人员成功让计算机实现导航 机器视觉 模式识别 联系记忆及分类等功能 研究人员的长期目标是建立一个有100亿个 神经元 和100万亿个 神经突触 的芯片系统 容量不超过两升 每小时耗电只有1度 最终建立在这种芯片上的计算机 将可以从经验中学习 找到联系 建立假设 模拟人脑的结构及弹性功能 本领域的杰出人物 目前为止共56名图灵奖获得者 1966 1999 40名 2000 2009 16名 MarvinMinsky 1969年 框架理论的创立者世界上最早的能模拟人的活动的机器人RobotCJohnMccarthy 1971年 Lisp语言限制逻辑情景演算 本领域的杰出人物 HerbertSimon和AllenNewell 1975年 符号主义学派的创始人 物理符号系统假说 开发了世界上最早的启发式程序 逻辑理论家 应用其证明了数学名著 数学原理 一书第二章52个定理中的38个定理开发了最早的下棋程序之一MATER Simon 发展和完善了语义网络EdwardFeigenbaum和RajReddy 1994年 大规模人工智能系统的设计和实现的先驱合力开发了第一个专家系统DENDRAL Feigenbaum 专家系统之父 1977年 RajReddy JohnMcCarthy指导的第一个博士 李开复的博士生导师 CMU 本领域的传奇人物 HerbertSimon1975年图灵奖获得者符号主义学派的创始人建立了机器证明数学定理的启发式搜索法提出有限理论对经济决策活动的影响1978年诺贝尔经济学奖获得者1943年在匹兹堡大学获得政治学博士学位1969年由于在心理学上的贡献而获得美国心理学会的 杰出科学贡献奖 1986年因为在行为科学上的出色贡献而荣获美国全国科学奖章 本领域杰出的中国学者 吴文俊几何定理自动证明领域的突破 吴方法 在国际机器证明领域产生了巨大影响 当前国际流行的主要符号计算软件都实现了吴文俊教授的算法获得首届国家自然科学一等奖 1956 Herbrand自动推理杰出成就奖 1997 首届国家最高科学技术奖 2000 吴文俊之路 本领域的顶级会议 IJCAIInternationalJointConferenceonArtificialIntelligence1969年召开第一届 每两年开一次AAAIAAAIConferenceonArtificialIntelligenceAAAI AmericanAssociationforArtificialIntelligence 1979年成立 2007年改名为AssociationfortheAdvancementofArtificialIntelligence1980年召开第一届 每年开一次KRInternationalConferenceonPrinciplesandKnowledgeRepresentationandReasoning1989年召开第一届 每两年开一次 本领域的顶级会议 WWWInternationalConferenceonWorldWideWeb1994年召开第一届 每年开一次ISWCInternationalSemanticWebConference2002年召开第一届 每年开一次 本领域的顶级会议 SIGMODACMSIGMODConferenceonManagementofDataSIGKDDACMSIGKDDConferenceonKnowledgeDiscoveryandDataMiningICDEIEEEInternationalConferenceonDataEngineeringICDMIEEEInternationalConferenceonDataMining

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论