




已阅读5页,还剩79页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 Chapter6TheBasicSolutionof TheTemperatureStressProblems 2 第六章温度应力问题的基本解法 3 Chapter6TheBasicSolutionofTemperatureStressProblems 6 4Solveplaneproblemoftemperaturestressesbydisplacement 6 3Theboundaryconditionsoftemperaturefiled 6 2Thedifferentialequationofheatconduction 6 1Thebasicconceptoftemperaturefieldandheatconduction 6 5Theintroducingofpotentialfunctionofdisplacement 6 6Theplaneproblemsofthermalstressesinaxisymmetrictemperaturefield TheBasicSolutionofTheTemperatureStressProblems 4 温度应力问题的基本解法 第六章温度应力问题的基本解法 5 Whenthetemperatureofaelasticbodychanges itsvolumewillexpandorcontract Iftheexpansionorcontractioncan thappenfreelyduetotheexternalrestrictionsorinternaldeformationcompatibilitydemands additionalstresseswillbeproducedinthestructure Thesestressesproducedbytemperaturechangearecalledthermalstresses ortemperaturestresses Neglectingtheeffectsofthetemperaturechangeonthematerialperformance tosolvethetemperaturestresses weneedtwoaspectsofcalculation 1 Solvethetemperaturefieldoftheelasticbodybytheinitialconditionsandboundaryconditions accordingtoheatconductionequations Andthedifferencebetweentheformertemperaturefieldandthelatertemperaturefieldisthetemperaturechangeoftheelasticbody 2 Solvethetemperaturestressesoftheelasticbodyaccordingtothebasicequationsoftheelasticmechanics Thischapterwillpresentthesetwoaspectsofcalculationsimply Chapter6TheBasicSolutionofTheTemperatureStressProblems TheBasicSolutionofTheTemperatureStressProblems 6 当弹性体的温度变化时 其体积将趋于膨胀和收缩 若外部的约束或内部的变形协调要求而使膨胀或收缩不能自由发生时 结构中就会出现附加的应力 这种因温度变化而引起的应力称为热应力 或温度应力 忽略变温对材料性能的影响 为了求得温度应力 需要进行两方面的计算 1 由问题的初始条件 边界条件 按热传导方程求解弹性体的温度场 而前后两个温度场之差就是弹性体的变温 2 按热弹性力学的基本方程求解弹性体的温度应力 本章将对这两方面的计算进行简单的介绍 第六章温度应力问题的基本解法 温度应力问题的基本解法 7 6 1TheBasicConceptofTemperatureFieldAndHeatConduction 1 Thetemperaturefield Thetotalofthetemperatureatallthepointsinaelasticbodyatacertainmoment denotedbyT Unstabletemperaturefiledornonsteadytemperaturefield Thetemperatureinthetemperaturefieldchangeswithtime i e T T x y z t Stabletemperaturefiledorsteadytemperaturefield Thetemperatureinthetemperaturefieldisonlythefunctionofpositionalcoordinates i e T T x y z Planetemperaturefield Thetemperatureintemperaturefieldonlychangeswithtwopositionalcoordinates i e T T x y t TheBasicSolutionofTheTemperatureStressProblems 8 6 1温度场和热传导的基本概念 1 温度场 在任一瞬时 弹性体内所有各点的温度值的总体 用T表示 不稳定温度场或非定常温度场 温度场的温度随时间而变化 即T T x y z t 稳定温度场或定常温度场 温度场的温度只是位置坐标的函数 即T T x y z 平面温度场 温度场的温度只随平面内的两个位置坐标而变 即T T x y t 温度应力问题的基本解法 9 3 Temperaturegradient Thevectorthatpointstothedirectioninwhichtemperatureincreasealongthenormaldirectionoftheisothermalsurface Itisdenotedby T anditsvalueisdenotedby wherenisthenormaldirectionoftheisothermalsurface Thecomponentsoftemperaturegradientateachcoordinateare TheBasicSolutionofTheTemperatureStressProblems 10 温度应力问题的基本解法 2 等温面 在任一瞬时 连接温度场内温度相同各点的曲面 显然 沿着等温面 温度不变 沿着等温面的法线方向 温度的变化率最大 3 温度梯度 沿等温面的法线方向 指向温度增大方向的矢量 用 T表示 其大小用表示 其中n为等温面的法线方向 温度梯度在各坐标轴的分量为 11 Definetobetheunitvectorinnormaldirectionoftheisothermalsurface pointingtothetemperatureincreasingdirection 4 Thermalfluxspeed ThequantityofheatflowingthroughtheareaSontheisothermalsurfaceinunittime denotedby TheBasicSolutionofTheTemperatureStressProblems 12 温度应力问题的基本解法 取为等温面法线方向且指向增温方向的单位矢量 则有 T 1 4 热流速度 在单位时间内通过等温面面积S的热量 用表示 13 Itsvalueis 2 Thermalfluxdensity Thethermalfluxspeedflowingthroughunitareaontheisothermalsurface denotedby Thenwehave 5 Thebasictheoremofheattransfer Thethermalfluxdensityisindirectproportiontothetemperaturegradientandinthereversedirectionofit i e 3 TheBasicSolutionofTheTemperatureStressProblems iscalledthecoefficientoftheheattransfer Equations 1 2 and 3 leadto 14 热流密度 通过等温面单位面积的热流速度 用表示 则有 温度应力问题的基本解法 其大小为 2 称为导热系数 由 1 2 3 式得 15 Wecanseethatthecoefficientoftheheattransfermeans thethermalfluxspeedthroughunitareaoftheisothermalsurfaceperunittemperaturegradient Fromequations 1 and 3 wecanseethatthevalueofthethermalfluxdensity Theprojectionsofthethermalfluxdensityonaxes TheBasicSolutionofTheTemperatureStressProblems Itisobviousthatthecomponentofthermalfluxdensityinanydirectionisequaltothecoefficientofheattransfermultipliedbythedescendingrateofthetemperatureinthisdirection 16 温度应力问题的基本解法 由 1 和 3 可见 热流密度的大小 可见 导热系数表示 在单位温度梯度下通过等温面单位面积的热流速度 热流密度在坐标轴上的投影 可见 热流密度在任一方向的分量 等于导热系数乘以温度在该方向的递减率 17 Theprincipleofheatquantityequilibrium Withinanyperiodoftime theheatquantityaccumulatedinanyminutepartoftheobjectequalstheheatquantityconductedintothisminutepartplustheheatquantitysuppliedbyinternalheatsource 6 2TheDifferentialEquationofHeatConduction TheBasicSolutionofTheTemperatureStressProblems Takeaminutehexahedrondxdydzasshownintheabovefigure SupposethatthetemperatureofthishexahedronrisesfromTto Theheatquantityaccumulatedbytemperatureis whereisthedensityoftheobject Cistheheatquantityneededwhenthetemperatureoftheobjectwithaunitmassriseonedegree specificthermalcapability 18 热量平衡原理 在任意一段时间内 物体的任一微小部分所积蓄的热量 等于传入该微小部分的热量加上内部热源所供给的热量 6 2热传导微分方程 取图示微小六面体dxdydz 假定该六面体的温度在dt时间内由T升高到 由温度所积蓄的热量是 其中是物体的密度 C是单位质量的物体升高一度时所需的热量 比热容 温度应力问题的基本解法 19 Withinthesameperiodoftimedt theheatquantityqxdydzdtisconductedintothehexahedronfromleft andtheheatquantityisconductedoutthehexahedronthroughright Hence thenetheatquantityconductedintois TheBasicSolutionofTheTemperatureStressProblems Introduceintoit Wecanseethat Hence thetotalnetheatquantityconductedintothehexahedronis whichcanbeabbreviatedas 20 温度应力问题的基本解法 由左右两面传入的净热量为由上下两面传入的净热量为 由前后两面传入的净热量为 因此 传入六面体的总净热量为 简记为 21 Supposethatthereisapositiveheatresourcetosupplyheatinsidetheobject whichsupplyheatquantityWperunitvolumeinunittime ThentheheatquantitythatsuppliedbythisheatresourceduringtimedtisWdxdydzdt Accordingtotheprincipleofheatquantityequilibrium TheBasicSolutionofTheTemperatureStressProblems 22 假定物体内部有正热源供热 在单位时间 单位体积供热为W 则该热源在时间dt内所供热量为Wdxdydzdt 根据热量平衡原理得 温度应力问题的基本解法 23 6 3TheBoundaryConditionsofTemperatureFiled Tosolvethedifferentialequation andsequentiallysolvethetemperaturefiled thetemperatureoftheobjectatinitialmomentmustbeknown i e theso calledinitialcondition Atthesametime theruleofheatexchangebetweentheobjectsurfaceandthesurroundingmediumaftertheinitialmomentmustbealsoknown i e theso calledboundaryconditions Theinitialconditionandtheboundaryconditionsarecalledbyajointnameoftheinitialvalueconditions Initialcondition Boundaryconditionsaredividedintofourkindsofforms Thefirstkindofboundarycondition Thetemperatureatanypointontheobjectsurfaceisknownatallmoments i e whereTsisthesurfacetemperatureoftheobject TheBasicSolutionofTheTemperatureStressProblems 24 6 3温度场的边值条件 初始条件 边界条件分四种形式 第一类边界条件已知物体表面上任意一点在所有瞬时的温度 即其中Ts是物体表面温度 温度应力问题的基本解法 为了能够求解热传导微分方程 从而求得温度场 必须已知物体在初瞬时的温度 即所谓初始条件 同时还必须已知初瞬时以后物体表面与周围介质之间热交换的规律 即所谓边界条件 初始条件和边界条件合称为初值条件 25 Thesecondkindofboundarycondition Thenormalthermalfluxdensityatanypointontheobjectsurfaceisknown i e wherethesubscriptsmeans surface andnmeans normal Theforthkindofboundarycondition Itisknownthatthetwoobjectscontactcompletely andexchangeheatthroughtheformofheatconduction i e TheBasicSolutionofTheTemperatureStressProblems 26 温度应力问题的基本解法 其中Te是周围介质的温度 称为运流放热系数 或简称热系数 第四类边界条件已知两物体完全接触 并以热传导方式进行热交换 即 第二类边界条件已知物体表面上任意一点的法向热流密度 即其中角码s表示 表面 角码n表示法向 27 6 4SolvePlaneProblemofTemperatureStressbyDisplacement SupposethetemperaturechangeofeverypointintheelasticbodyisT Foranisotropicbody ifthereisnoconstricts thentheminutelengthateverypointoftheelasticbodywillgeneratenormalstrain whereisthecoefficientofexpansionoftheelasticbody Thus thecomponentsofstrainateverypointoftheelasticbodyare However becausetheelasticbodyisrestrictedbytheexternalrestrictionsandmutualrestrictionsamongeachsectionintheobject theabove mentioneddeformationscannothappenfreely Thenthestressisproduced i e theso calledtemperaturestress Thistemperaturestresswillresultinadditionalstrainduetotheelasticityoftheobject asexpressedbyHooke slaw Therefore thecomponentsofthetotalstrainoftheelasticbodyare TheBasicSolutionofTheTemperatureStressProblems SupposethetemperaturechangeofeverypointintheelasticbodyisT Foranisotropicbody ifthereisnoconstricts thentheminutelengthateverypointoftheelasticbodywillgeneratenormalstrain whereisthecoefficientofexpansionoftheelasticbody Thus thecomponentsofstrainateverypointoftheelasticbodyare However becausetheelasticbodyisrestrictedbytheexternalrestrictionsandmutualrestrictionsamongeachsectionintheobject theabove mentioneddeformationscannothappenfreely Thenthestressisproduced i e theso calledtemperaturestress Thistemperaturestresswillresultinadditionalstrainduetotheelasticityoftheobject asexpressedbyHooke slaw Therefore thecomponentsofthetotalstrainoftheelasticbodyare 28 6 4按位移求解温度应力的平面问题 设弹性体内各点的温变为T 对于各向同性体 若不受约束 则弹性体内各点的微小长度 都将产生正应变 是弹性体的膨胀系数 这样 弹性体内各点的形变分量为 温度应力问题的基本解法 但是 由于弹性体所受的外在约束以及体内各部分之间的相互约束 上述形变并不能自由发生 于是就产生了应力 即所谓温度应力 这个温度应力又将由于物体的弹性而引起附加的形变 如虎克定理所示 因此 弹性体总的形变分量是 29 TheBasicSolutionofTheTemperatureStressProblems Forthetemperaturechangeproblemsofplanestress theaboveequationsaresimplifiedas Theyarethephysicalequationsofthermalelasticmechanicsoftheproblemsofplanestress 30 对于平面应力的变温问题 上式简化为 温度应力问题的基本解法 这就是平面应力问题热弹性力学的物理方程 31 ExpressthecomponentsofstressbythecomponentsofstrainandthetemperaturechangeT thenthephysicalequationsbecome TheBasicSolutionofTheTemperatureStressProblems Thegeometricequationsstillare IntroducingthegeometricequationsintothephysicalequationsyieldsthecomponentsofstresswhichareexpressedbythecomponentsofdisplacementandtemperaturechangeT 32 温度应力问题的基本解法 将应力分量用形变分量和变温T表示的物理方程为 几何方程仍然为 将几何方程代入物理方程 得用位移分量和变温T表示的应力分量 33 Introducingtheaboveequationsintothedifferentialequationsofequilibriumignoringbodyforces TheBasicSolutionofTheTemperatureStressProblems 34 将上式代入不计体力的平衡微分方程 温度应力问题的基本解法 35 Thesearethedifferentialequationssolvingtheproblemsofplanestressoftemperaturestressbydisplacement Inthesameway introducingthecomponentsofthestressesintostressboundaryconditionswithoutsurfaceforce TheBasicSolutionofTheTemperatureStressProblems 36 简化得 这就是按位移求解温度应力平面应力问题的微分方程 同理 将应力分量代入无面力的应力边界条件 温度应力问题的基本解法 1 37 Thesearethestressboundaryconditionstosolveplanestressproblemsoftemperaturestressbydisplacement Theboundaryconditionsofdisplacementstillare Compareequations 1 2 withtheequations 1 2 in 2 8 chapter2 WecanseethatthecomponentsXandYofthebodyforcesaredisplacedby TheBasicSolutionofTheTemperatureStressProblems 38 温度应力问题的基本解法 简化后得 这是按位移求解温度应力平面应力问题的应力边界条件 位移边界条件仍然为 将式 1 2 与第二章 2 8中式 1 2 对比 可见 2 39 Whilethecomponentsandofthesurfaceforcesaredisplacedby Thenthecorrespondingequationsundertheconditionsofplanestrainareobtained TheBasicSolutionofTheTemperatureStressProblems 40 代替了体力分量X及Y 而 则得到在平面应变条件下的相应方程 代替了面力分量及 对于温度应力的平面应变问题 只须将温度应力平面应力问题的 温度应力问题的基本解法 41 6 5Theintroductionofdisplacementpotentialfunction Fromlastsectionweknowthatwhensolvingtheproblemsoftemperaturestressbydisplacementunderthesituationofplanestress wemustletthecomponentsofdisplacementuandvsatisfythedifferentialequations Andtheboundaryconditionsofdisplacementandstressmustbesatisfiedalsoonboundaries Weshoulddoitbytwostepswhensolvingtheproblems 1 Figureoutanarbitrarygroupofparticularsolutionoftheabovedifferentialequations Itneedonlysatisfythedifferentialequations butnotalwayssatisfytheboundaryconditions 2 FigureoutagroupofsupplementarysolutionofthedifferentialequationsignoringtemperaturechangeT whichcansatisfytheboundaryconditionsafterbeingsuperposedwiththeparticularsolution TheBasicSolutionofTheTemperatureStressProblems 42 6 5位移势函数的引用 由上一节知 在平面应力的情况下按位移求解温度应力问题时 须使位移分量u和v满足微分方程 并在边界上满足位移边界条件和应力边界条件 实际求解时 宜分两步进行 1 求出上述微分的任意一组特解 它只需满足微分方程 而不一定要满足边界条件 2 不计变温T 求出微分方程的一组补充解 使它和特解叠加以后 能满足边界条件 温度应力问题的基本解法 43 Introduceintoafunction andtaketheparticularsolutionofdisplacementas Thefunctioniscalledthepotentialfunctionofdisplacement Introducingandintothedifferentialequationsinsteadofuandvrespectivelyandsimplifyingyields TheBasicSolutionofTheTemperatureStressProblems Introducing andintotheexpressionofthecomponentsofstressexpressedbythecomponentsofdisplacementandthetemperaturechangeT 44 温度应力问题的基本解法 45 yieldsthecomponentsofstressofcorrespondingparticularsolutionsofdisplacement TheBasicSolutionofTheTemperatureStressProblems 46 温度应力问题的基本解法 可得相应位移特解的应力分量是 47 Supposeandarethesupplementarysolutionofdisplacement Then andmustsatisfythehomogeneousdifferentialequations TheBasicSolutionofTheTemperatureStressProblems Thecomponentsofstresscorrespondingtothesupplementarysolutionofdisplacementare Noticethatthetemperaturechangeisignored i e T 0 48 设 为位移的补充解 则 需满足齐次微分方程 相应于位移补充解的应力分量为 注意不计变温 即T 0 温度应力问题的基本解法 49 TheBasicSolutionofTheTemperatureStressProblems inwhichthestressfunctioncanbechosenaccordingtotherequestoftheboundaryconditionsofstress 50 总的应力分量是 需满足应力边界条件 在应力边界问题中 没有位移边界条件 可以把相应于位移补充解的应力分量直接用应力函数来表示 即其中的应力函数可以按照应力边界条件的要求来选取 温度应力问题的基本解法 在平面应变条件下 将上述各方程中的 51 Solution Thedifferentialequationthatthepotentialfunctionofdisplacementneedsatisfyis TheBasicSolutionofTheTemperatureStressProblems Comparingthecoefficientofthetwosidesyields 52 温度应力问题的基本解法 例1 图示矩形薄板中发生如下的变温 其中的T0是常量 若 试求其温度应力 解 位移势函数所应满足的微分方程为 53 SubstitutingAandBbackyieldsthepotentialfunctionofdisplacement Sothecomponentsofstresscorrespondingtotheparticularsolutionofdisplacementare Toobtainthesupplementarysolutions letandwecanarriveattheneededcomponentsofstresscorrespondingtothesupplementarysolutionsofdisplacement TheBasicSolutionofTheTemperatureStressProblems Therefore thetotalcomponentsofstressare Theboundaryconditionsrequire 54 将A B回代 得位移势函数于是相应于位移特解的应力分量为为求补充解 取可得所需要的相应于位移补充解的应力分量 温度应力问题的基本解法 因此 总的应力分量为 边界条件要求 55 Itisobviousthatthelastthreeconditionsaresatisfied whilethefirstconditioncan tbesatisfied Butduetoa b thefirstconditioncanbetransformedtoequivalentstaticconditionbyutilizingSaint Venantprinciple i e theprincipalvectorandprincipalmomentofequaltozeroattheboundariesof TheBasicSolutionofTheTemperatureStressProblems Introducing intotheaboveequationyields Sothetemperaturestressesoftherectangularplateare 56 显然 后三个条件是满足的 而第一个条件不能满足 但由于 可应用圣维南原理 把第一个条件变换为静力等效条件 即 在的边界上 的主矢量及主矩等于零 将 温度应力问题的基本解法 代入上式 求得于是矩形板的温度应力为 57 6 6ThePlanethermalstressProblemsofAxisymmetricTemperatureField Fortheelasticbodyofaxisymmetricstructuresuchascircle annulusandcylinderetc ifthetemperaturechangeofthemisalsoaxisymmetricT T r thentheycanbesimplifiedastheplaneproblemsofthermalstressofaxisymmetrictemperaturefield whicharesuitabletobesolvedwithpolarcoordinate TheBasicSolutionofTheTemperatureStressProblems 58 6 6轴对称温度场平面热应力问题 对于圆形 圆环及圆筒等这类轴对称结构弹性体 若其变温也是轴对称的T T r 则可简化为轴对称温度场平面热应力问题 轴对称温度场平面热应力问题 宜采用极坐标求解 不考虑体积力平面应力问题平衡方程 在轴对称问题中得到简化 其第二式自然满足 而第一式成为 温度应力问题的基本解法 59 Thegeometricequationsaresimplifiedas Thephysicalequationsaresimplifiedas Expressingthestresswithstrains TheBasicSolutionofTheTemperatureStressProblems 60 温度应力问题的基本解法 几何方程简化为 物理方程简化为 将应力用应变表示 61 TheBasicSolutionofTheTemperatureStressProblems Thecomponentsofstresscanbeobtainedthroughtheaboveequation 62 温度应力问题的基本解法 63 wheretheconstantsAandBaredecidedbytheboundaryconditions Inthecaseofplanestrain itneedonlythat i
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 退休生活旅游纪念品创新创业项目商业计划书
- 碳化钨制备工入职考核试卷及答案
- 游戏物理引擎集成服务创新创业项目商业计划书
- 粗液脱硅工协作考核试卷及答案
- 湖盐脱水工设备维护与保养考核试卷及答案
- 平版印刷员数字化技能考核试卷及答案
- 重冶火法精炼工质量追溯知识考核试卷及答案
- 图书馆服务员理论知识考核试卷及答案
- 家用电冰箱制造工异常处理考核试卷及答案
- 炉外精炼工设备维护与保养考核试卷及答案
- 教育政策法规课件
- 2025年秋季开学典礼校长致辞:启步金秋话成长播梦育英向未来
- 2025科研素养考试题及答案
- 兽药销售业务培训教材
- 2025年湖北省农村义务教育学校教师公开招聘小学语文真题(附答案)
- 2025-2030中国医疗护理器械行业市场发展现状及发展趋势与投资风险研究报告
- 2025四川绵阳市医学会招聘2人笔试模拟试题及答案解析
- 测绘法规与管理课件
- 软件项目突发事件应急预案
- 湖南省安仁县2025年上半年事业单位公开招聘试题含答案分析
- 2025年潍坊市中考数学试题卷(含标准答案)
评论
0/150
提交评论