




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
172 实际问题与反比例函数(一)教学目标一、知识与技能1能灵活列反比例函数表达式解决一些实际问题2能综合利用几何、方程、反比例函数的知识解决一些实际问题二、过程与方法1经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题2体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力三、情感态度与价值观1积极参与交流,并积极发表意见2体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具教学重点掌握从实际问题中建构反比例函数模型教学难点从实际问题中寻找变量之间的关系关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想教学过程一、创设问题情境,引入新课活动1问题:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全,迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务的情境(1)请你解释他们这样做的道理(2)当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?(3)如果人和木板对湿地的压力合计600N,那么:用含S的代数式表示P,P是S的反比例函数吗?为什么?当木板面积为0.2m2时,压强是多少?如果要求压强不超过6000Pa,木板面积至少要多大?在直角坐标系中,作出相应的函数图象请利用图象对(2)(3)作出直观解释,并与同伴交流设计意图:展示反比例函数在实际生活中的应用情况,激发学生的求知欲和浓厚的学习兴趣师生行为:学生分四个小组进行探讨、交流领会实际问题的数学煮义,体会数与形的统一教师可以引导、启发学生解决实际问题在此活动中,教师应重点关注学生:能灵活列反比例函数表达式解决一些实际问题;能积极地与小组成员合作交流;是否有强烈的求知欲生:在物理中,我们曾学过,当人和木板对湿地的压力一定时,随着木板面积S的增大,人和木板对地面的压强p将减小生:在(3)中,p(S0)p是S的反比例函数;当S 0.2m2时p3000Pa;如果要求压强不超过6000Pa,根据反比例函数的性质,木板面积至少0.1m2;那么,为什么作图象在第一象限作呢?因为在物理学中,S0,p0图象如下图师:从此活动中,我们可以发现,生活中存在着大量的反比例函数的现实从这节课开始我们就来学习“172实际问题与反比例函数”,你会发现有了反比例函数,很多实际问题解决起来会很方便二、讲授新课活动2例1市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下挖进多深?(3)当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15m,相应的,储存室的底面积应改为多少才能满足需要(保留两位小数)设计意图:让学生体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,此活动让学生从实际问题中寻找变量之间的关系而关键是充分运用反比例函数分析实际情况,建立函数模型,并且利用函数的性质解决实际问题师生行为:先由学生独立思考,然后小组内合作交流,教师和学生最后合作完成此活动在此活动中,教师有重点关注:能否从实际问题中抽象出函数模型;能否利用函数模型解释实际问题中的现象;能否积极主动的阐述自己的见解生:我们知道圆柱的容积是底面积深度,而现在容积一定为104m3,所以Sd104变形就可得到底面积S与其深度d的函数关系,即S所以储存室的底面积S是其深度d的反比例函数生:根据函数S,我们知道给出一个d的值就有唯一的S的值和它相对应,反过来,知道S的一个值,也可求出d的值题中告诉我们“公司决定把储存室的底面积5定为500m2,即S500m2,”施工队施工时应该向下挖进多深,实际就是求当S 500m2时,d?m根据S,得500,解得d20即施工队施工时应该向下挖进20米生:当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石为了节约建设资金,公司临时改变计划,把储存室的深度改为15m,即d15m,相应的储存室的底面积应改为多少才能满足需要;即当d15m,S?m2呢?根据S,把d15代入此式子,得S666.67当储存室的探为15m时,储存室的底面积应改为666.67m2才能满足需要师:大家完成的很好当我们把这个“煤气公司修建地下煤气储存室”的问题转化成反比例函数的数学模型时,后面的问题就变成了已知函数值求相应自变量的值或已知自变量的值求相应的函数值,借助于方程,问题变得迎刃而解,三、巩固提高活动3练习:如图,某玻璃器皿制造公司要制造一种窖积为1升(1升1立方分米)的圆锥形漏斗(1)漏斗口的面积S与漏斗的深d有怎样的函数关系?(2)如果漏斗口的面积为100厘米2,则漏斗的深为多少?设计意图:让学生进一步体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,更进一步激励学生学习数学的欲望师生行为:由两位学生板演,其余学生在练习本上完成,教师可巡视学生完成情况,对“学困生”要提供一定的帮助,此活动中,教师应重点关注:学生能否顺利建立实际问题的数学模型;学生能否积极主动地参与数学活动,体验用数学模型解决实际问题的乐趣;学生能否注意到单位问题生:解:(1)根据圆锥体的体积公式,我们可以设漏斗口的面积为Scm,漏斗的深为dcm,则容积为1升l立方分米1000立方厘米所以,Sd1000,S(2)根据题意把S100cm2代入S,中,得100,d30(cm)所以如果漏斗口的面积为100cm2,则漏斗的深为30cm活动4练习:(1)已知某矩形的面积为20cm2,写出其长y与宽x之间的函数表达式(2)当矩形的长为12cm时,求宽为多少?当矩形的宽为4cm,求其长为多少?(3)如果要求矩形的长不小于8cm,其宽至多要多少?设计意图:进一步让学生体会从实际问题中建立函数模型的过程,即将实际问题置于已有的知识背景之中,然后用数学知识重新理解这是什么?可以看成什么?师生行为由学生独立完成,教师根据学生完成情况及时给予评价生:解:(1)根据矩形的面积公式,我们可以得到20xy所以y,即长y与宽x之间的函数表达式为y(2)当矩形的长为12cm时求宽为多少?即求当y12cm时,x?cm,则把y12cm代入y中得12,解得x(cm)当矩形的宽为4cm,求长为多少?即当x4cm时,y?cm,则把x4cm代入y中,有y5(cm)所以当矩形的长为12cm时,宽为cm;当矩形的宽为4cm时,其长为5cm(3)y此反比例函数在第一象限y随x的增大而减小,如果矩形的长不小于8cm,即y8cm,所以 8cm,因为x0,所以208xx(cm)即宽至多是m四、课时小结本节课是用函数的观点处理实际问题,并且是蕴含着体积、面积这样的实际问题,而解决这些问题,关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么?可以是什么?逐步形成考察实际问题的能力,在解决问题时,应充分利用函数的图象,渗透数形结合的思想172 实际问题与反比例函数(二)教学目标一、知识与技能1能灵活列反比例函数表达式解决一些实际问题2能综合利用工程中工作量,工作效率,工作时间的关系及反比例函数的性质等知识解决一些实际问题二、过程与方法1经历分析实际问题中变量之间的关系,建立反比例函数的模型,进而解决问题的过程2体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力三、情感态度与价值观1积极参与交流,并积极发表意见2体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具教学重点:掌握从实际问题中建构反比例函数模型教学难点:从实际问题中寻找变量之间的关系关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想教学过程一、创设问题情境,引入新课活动1某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x元与日销售量y之间有如下关系:(1)根据表中的数据在平面直角坐标系中描出实数对(x,y)的对应点;(2)猜测并确定y与x之间的函数关系式,并画出图象;(3)设经营此贺卡的销售利润为W元,试求出w与x之间的函数关系式,若物价局规定此贺卡的售价最高不能超过10元/个,请你求出当日销售单价x定为多少元时,才能获得最大日销售利润?设计意图:进一步展示现实生活中两个变量之间的反比例函数关系,激发学生学习数学的兴趣和强烈的求知欲师生行为:学生亲自动手操作,并在小组内合作交流教师巡视学生小组讨论的结果在此活动中,教师应重点关注:学生动手操作的能力;学生数形结合的意识;学生数学建模的意识;学生能否大胆说出自己的见解,倾听别人的看法生:(1)根据表中的数据在平面直角坐标系中描出了对应点(3,20),(4,15),(5,12),(6,10)(2)由下图可猜测此函数为反比例函数图象的一支,设y,把点(3,20)代人y,得k60所以y把点(4,15)(5,12)(6,10)代人上式均成立所以y与x的函数关系式为y生:(3)物价局规定此贺卡的售价最高不能超过10元个,即x10,根据y在第一象限y随x的增大而减小,所以10,y10,10y60,y6所以W(x2)y(x2)60当x10时,W有最大值即当日销售单价x定为10元时,才能获得最大利润师:同学们的分析都很好,除了能用数学模型刻画现实问题外,还能用数学知识解释生活中的问题下面我们再来看又一个生活中的问题二、讲授新课活动2例2码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载宪毕恰好用了8天时间(1)轮船到达目的地后开始卸货,卸货速度v(单位:吨天)与卸货时间t(单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5日内卸载完毕,那么平均每天至少要卸多少吨货物?设计意图:进一步分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释是什么?可以看作什么?逐步形成考察实际问题的能力在解决问题时,还应充分利用函数的图象,渗透数形结合的思想师生行为:学生先独立思考,然后小组交流合作教师应鼓励学生运用数形结合,用多种方法来思考问题,充分利用好方程,不等式,函数三者之间的关系,在此活动中,教师应重点关注:学生能否自己建构函数模型,学生能否将函数,方程、不等式的知识联系起来;学生面对困难,有无克服困难的勇气和战胜困难的坚强意志师:从题设中,我们不难发现:v和t之间的函数关系,实际上是卸货速度与卸货时间之间的关系根据卸货速度货物的总量卸货时间,就可得到v和t的函数关系但货物的总量题中并未直接告诉,如何求得生:中告诉了我们码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间,根据装货速度装货时间货物的总量,可以求出轮船装载货物的总量,即货物的总量为308240吨师:很好!下面同学们就来自己完成生:解:(1)设轮船上的货物总量为k吨,则根据已知条件有:k380240所以v与t的函数式为v(2)由于遭到紧急情况,船上的货物必须在不超过5日内卸载完毕,求平均每天至少卸多少吨货物?即当t5时,v至少为多少呢? 由v得t,t5,所以5, 又v0,所以2405v 解得v48所以船上的货物要在不超过5日内卸载完毕,平均每天至少却4.8吨货物生:老师,我认为得出v与t的函数关系后,借助于图象也可以完成第(2)问画出v在第一象限内的图象(因为t0)如下图当t5时,代入v,得v48根据反比例函数的性质v在第一象限,v随t的增大而减小所以当0t5时,v48即若货物不超过5天内卸完,则平均每天至少要卸货48吨生:我认为还可以用方程来解把t5代入v,得v48从结果可以看出,如果全部货物恰好5天卸完,则平均每天要卸货48吨若货物在不超过5天内卸完,则平均每天至少要卸货48吨师:同学们的思维非常敏捷,竟想出这么多的办法来解决这个实际问题,太棒了!我们不妨再来看一个题,肯定能做得更好!三、巩固提高活动3一辆汽车往返于甲、乙两地之间,如果汽车以50千米时的平均速度从甲地出发,则经过6小时可到达乙地(1)甲、乙两地相距多少千米?(2)如果汽车把速度提高到v(千米时)那么从甲地到乙地所用时间t(小时)将怎样变化?(3)写出t与v之间的函数关系式;(4)因某种原因,这辆汽车需在5小时内从甲地到达乙地,则此时汽车的平均速度至少应是多少?(5)已知汽车的平均速度最大可达80千米时,那么它从甲地到乙地最快需要多长时间?设计意图:本题可以通过计算解决以上问题,也可以根据函数的图象对问题进行解释,通过两种方法的比较,可以加深对这类问题的理解师生行为:先由学生独立完成,后在小组内讨论交流教师可巡视,对“学围生”以适当的帮助解:(1)506300(千米);(2)t将减小;(3)t;(4)由题意可知5,v60(千米时);(5)t3.75小时四、课时小结本节课是继续用函数的观点处理实际问题,关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么? 可以看到什么?逐步形成考察实际问题的能力,在解决问题时不仅要充分利用函数的图象,渗透数形结合的思想,也要注意函数不等式、方程之间的联系172 实际问题与反比例函数(三)教学目标一、知识与技能1能灵活列反比例函数表达式解决一些实际问题2能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题二、过程与方法1经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题2体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力三、情感态度与价值观1积极参与交流,并积极发表意见2体验反比例函数是有效地描述物理世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具教学重点:掌握从物理问题中建构反比例函数模型教学难点:从实际问题中寻找变量之间的关系,关键是充分运用所学知识分析物理问题,建立函数模型,教学时注意分析过程,渗透数形结合的思想教学过程一、创设问题情境,引入新课活动1问题:在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用下面的例子就是其中之一例1在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R5欧姆时,电流I2安培(1)求I与R之间的函数关系式;(2)当电流I0.5时,求电阻R的值设计意图:运用反比例函数解决物理学中的一些相关问题,提高各学科相互之间的综合应用能力师生行为:可由学生独立思考,领会反比例函数在物理学中的综合应用教师应给“学困生”一点物理学知识的引导师:从题目中提供的信息看变量I与R之间的反比例函数关系,可设出其表达式,再由已知条件(I与R的一对对应值)得到字母系数k的值生:(1)解:设I R5,I2,于是2,所以k10,I(2)当I0.5时,R=20(欧姆)师:很好!“给我一个支点,我可以把地球撬动”这是哪一位科学家的名言?这里蕴涵着什么样的原理呢?生:这是古希腊科学家阿基米德的名言师:是的公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”:若两物体与支点的距离反比于其重量,则杠杆平衡,通俗一点可以描述为:阻力阻力臂动力动力臂(如下图)下面我们就来看一例子二、讲授新课活动2例3小伟欲用撬棍橇动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和0.5米(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力?(2)若想使动力F不超过题(1)中所用力的一半,则动力臂至少要加长多少?设计意图:物理学中的很多量之间的变化是反比例函数关系因此,在这儿又一次借助反比例函数的图象和性质解决一些物理学中的问题,即跨学科综合应用师生行为:先由学生根据“杠杆定律”解决上述问题教师可引导学生揭示“杠杆平衡”与“反比例函数”之间的关系教师在此活动中应重点关注:学生能否主动用“杠杆定律”中杠杆平衡的条件去理解实际问题,从而建立与反比例函数的关系;学生能否面对困难,认真思考,寻找解题的途径;学生能否积极主动地参与数学活动,对数学和物理有着浓厚的兴趣师:“撬动石头”就意味着达到了“杠杆平衡”,因此可用“杠杆定律”来解决此问题生:解:(1)根据“杠杆定律”有Fl12000.5,得F当l1.5时,F400因此,撬动石头至少需要400牛顿的力(2)若想使动力F不超过题(1)中所用力的一半,即不超过200牛,根据“杠杆定律”有Fl600,l当F400200时,l3;31.51.5(米)因此,若想用力不超过400牛顿的一半,则动力臂至少要如长1.5米生:也可用不等式来解,如下:Fl600,F而F400200时,200,l3所以l1.531.51.5即若想用力不超过400牛顿的一半,则动力臂至少要加长1.5米生:还可由函数图象,利用反比例函数的性质求出师:很棒!请同学们下去亲自画出图象完成,现在请同学们思考下列问题:用反比例函数的知识解释:在我们使用橇棍时,为什么动力臂越长越省力?生:因为阻力和阻力臂不变,设动力臂为l,动力为F,阻力阻力臂k(常数且k0),所以根据“杠杆定理”得Flk,即F (k为常数且k0)根据反比例函数的性质,当k0时,在第一象限F随l的增大而减小,即动力臂越长越省力师:其实反比例函数在实际运用中非常广泛例如在解决经济预算问题中的应用活动3问题:某地上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.550.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x0.4)元成反比例又当x065元时,y0.8(1)求y与x之间的函数关系式;(2)若每度电的成本价0.3元,电价调至0.6元,请你预算一下本年度电力部门的纯收人多少?设计意图:在生活中各部门,经常遇到经济预算等问题,有时关系到因素之间是反比例函数关系,对于此类问题我们往往由题目提供的信息得到变量之间的函数关系式,进而用函数关系式解决一个具体问题师生行为:由学生先独立思考,然后小组内讨论完成教师应给予“学困生”以一定的帮助生:解:(1)y与x04成反比例,设y(k0)把x0.65,y0.8代入y,得0.8,解得k0.2y=,y与x之间的函数关系为y(2)根据题意,本年度电力部门的纯收入为(0.60.3)(1y)0.3(1)0.3(1)0.320.6(亿元)答:本年度的纯收人为0.6亿元师生共析:(1)由题目提供的信息知y与(x0.4)之间是反比例函数关系,把x0.4看成一个变量,可设出表达式,再由题目条件x0.65时,y0.8得出字母系数的值;(2)纯收入总收入总成本三、巩固提高活动4一定质量的二氧化碳气体,其体积y(m3)是密度(kgm3)的反比例函数,请根据下图中的已知条件求出当密度1.1kgm3时二氧化碳气体的体积V的值设计意图:进一步体现物理和反比例函数的关系师生行为:由学生独立完成,教师讲评师:若要求出1.1kgm3时,V的值,首先V和的函数关系生:V和的反比例函数关系为:V生:当1.1kgm3根据V,得V900(m3)所以当密度1.1kgm3时二氧化碳气体的气体为900m3四、课时小结你对本节内容有哪些认识?重点掌握利用函数关系解实际问题,首先列出函数关系式,利用待定系数法求出解析式,再根据解析式解得设计意图:这种形式的小结,激发了学生的主动参与意识,调动了学生的学习兴趣,为每一位学生都创造了在数学学习活动中获得成功的体验机会,并为程度不同的学生提供了充分展示自己的机会,尊重学生的个体差异,满足多样化的学习需要,从而使小结不流于形式而具有实效性师生行为:学生可分小组活动,在小组内交流收获,然后由小组代表在全班交流教师组织学生小结反比例函数与现实生活联系非常紧密,特别是为讨论物理中的一些量之间的关系打下了良好的基础用数学模型的解释物理量之间的关系浅显易懂,同时不仅要注意跨学科间的综合,而本学科知识间的整合也尤为重要,例如方程、不等式、函数之间的不可分割的关系17.2 实际问题与反比例函数(四)教学目标:1、能综合利用物理电学知识,反比例函数知识解决一些实际问题2、体会数学与物理间的密切联系,增强应用意识,提高运用代数方法解决问题的能力3、积极参与交流,并积极发表意见教学重点:掌握从物理电学问题中建构反比列函数的模型教学难点:从实问题中寻找变量之间的关系,关键还是充分运用所学的知识分析物理中的电学问题,建立函数模型,教学时注意分析过程,渗透数行结合的思想教学过程:一、创设问题情境,引入新课活动1做一做:蓄电池的电压为定值,使用此电源时,电流与电阻间的函数关系如下图所示:(1)蓄电池的电压为多少?你能写出这一函数表达式吗?(2)完成下表,并回答下列问题:如果蓄电池为电源的用电器限制电流不得超10A,那么用电器的可变电阻可控制在什么范围内?师生共析:图形所提供的信息包括:直观上看,I与R之间的关系可能是反比例函数关系,利用相关知识IR=U(U为定值)得到确认;由图象上点A的坐标可知,当用电器电阻为9时,电流为4A(1)根据图象可得当用电器的电阻为9时,电流为4A,因为IR=U(U为定值),所以蓄电池的电压为U=94=36(V)所以电流I与电阻R之间的函数关系为即I与R两个物理量成反比例函数关系利用I与R两个物理量之间的关系可填写下表:从左向右依次为:12,9,6,若以此蓄电池为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 班组安全生产培训感悟课件
- 班组安全生产培训制度课件
- 高端旅游市场演变-洞察与解读
- 2025年安庆职业技术学院高层次人才引进7人模拟试卷及答案详解(历年真题)
- 班组安全教育培训方案课件
- 花青素与记忆增强-洞察与解读
- 2025年“才聚齐鲁成就未来”山东泰安市泰山财产保险股份有限公司河南分公司社会招聘4人考前自测高频考点模拟试题及答案详解1套
- 生物饵料高效利用-洞察与解读
- 2025年度洛阳市考古研究院引进急需短缺专业人才4名模拟试卷附答案详解
- 2025广西柳州市柳江区投资集团有限公司下属子公司柳州市堡鑫建筑工程有限公司招聘工作人员模拟试卷(含答案详解)
- 2025项目管理考试题及答案
- 医院手术室质控体系构建与管理
- 喷涂基础知识培训课件
- 2025年驻外内聘考试题库
- 中铁四局工作汇报与战略规划
- 矿山测量基础知识课件
- 【《上市公司财务造假分析的国内外文献综述》5100字】
- 企业融资培训课件
- 2025年抗菌药物合理使用培训
- 杜仲种植深加工项目可行性研究报告-备案立项
- 2025年乡村文化旅游发展报告:文旅融合下的乡村旅游生态旅游规划与实施研究
评论
0/150
提交评论