全国各地中考数学真题分类汇编.doc_第1页
全国各地中考数学真题分类汇编.doc_第2页
全国各地中考数学真题分类汇编.doc_第3页
全国各地中考数学真题分类汇编.doc_第4页
全国各地中考数学真题分类汇编.doc_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2012年全国各地中考数学真题分类汇编第13章 二次函数一、选择题1(2012菏泽)已知二次函数的图像如图所示,那么一次函数和反比例函数在同一平面直角坐标系中的图像大致是()ABCD考点:二次函数的图象;一次函数的图象;反比例函数的图象。C选项符合2(2012烟台)已知二次函数y=2(x3)2+1下列说法:其图象的开口向下;其图象的对称轴为直线x=3;其图象顶点坐标为(3,1);当x3时,y随x的增大而减小则其中说法正确的有()A1个B2个C3个D4个3(2012广州)将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为()Ay=x21By=x2+1Cy=(x1)2Dy=(x+1)24(2012泰安)将抛物线向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()ABCD考点:二次函数图象与几何变换。故选A5(2012泰安)二次函数的图象如图,若一元二次方程有实数根,则 的最大值为()AB3CD9考点:抛物线与x轴的交点。故选B6(2012泰安)二次函数的图象如图,则一次函数的图象经过()A第一、二、三象限B第一、二、四象限C第二、三、四象限D第一、三、四象限考点:二次函数的图象;一次函数的性质。7(2012泰安)设A,B,C是抛物线上的三点,则,的大小关系为()ABCD考点:二次函数图象上点的坐标特征。故选A8(2012乐山)二次函数y=ax2+bx+1(a0)的图象的顶点在第一象限,且过点(1,0)设t=a+b+1,则t值的变化范围是()A0t1B0t2C1t2D1t19(2012衢州)已知二次函数y=x27x+,若自变量x分别取x1,x2,x3,且0x1x2x3,则对应的函数值y1,y2,y3的大小关系正确的是()Ay1y2y3By1y2y3Cy2y3y1Dy2y3y110(2012义乌市)如图,已知抛物线y1=2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2若y1y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2例如:当x=1时,y1=0,y2=4,y1y2,此时M=0下列判断:当x0时,y1y2; 当x0时,x值越大,M值越小;使得M大于2的x值不存在; 使得M=1的x值是或其中正确的是()ABCD考点:二次函数综合题。故选:D11(2012杭州)已知抛物线y=k(x+1)(x)与x轴交于点A,B,与y轴交于点C,则能使ABC为等腰三角形的抛物线的条数是(B)A2B3C4D512(2012扬州)将抛物线yx21先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是()Ay(x2)22By(x2)22Cy(x2)22Dy(x2)2213(2012资阳)如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c0的解集是()A1x5Bx5Cx1且x5Dx1或x514(2012德阳)在同一平面直角坐标系内,将函数y=2x2+4x+1的图象沿x轴方向向右平移2个单位长度后再沿y轴向下平移1个单位长度,得到图象的顶点坐标是()A(1,1)B(1,2)C(2,2)D(1,1)15(2012德阳)设二次函数y=x2+bx+c,当x1时,总有y0,当1x3时,总有y0,那么c的取值范围是()Ac=3Bc3C1c3Dc316(2012兰州)抛物线y2x21的对称轴是()A直线B直线Cy轴D直线x217(2012张家界)当a0时,函数y=ax+1与函数y=在同一坐标系中的图象可能是()A BCD考点:反比例函数的图象;一次函数的图象。故选C18(2012宜宾)给出定义:设一条直线与一条抛物线只有一个公共点,只这条直线与这条抛物线的对称轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线有下列命题:直线y=0是抛物线y=x2的切线直线x=2与抛物线y=x2 相切于点(2,1)直线y=x+b与抛物线y=x2相切,则相切于点(2,1)若直线y=kx2与抛物线y=x2 相切,则实数k=其中正确命题的是()ABCD考点:二次函数的性质;根的判别式。故选B19(2012潜江)已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(1,0),(3,0)对于下列命题:b2a=0;abc0;a2b+4c0;8a+c0其中正确的有()A3个B2个C1个D0个考点:二次函数图象与系数的关系。分析:首先根据二次函数图象开口方向可得a0,根据图象与y轴交点可得c0,再根据二次函数的对称轴x=,结合图象与x轴的交点可得对称轴为x=1,结合对称轴公式可判断出的正误;根据对称轴公式结合a的取值可判定出b0,根据a、b、c的正负即可判断出的正误;利用b2a=0时,求出a2b+4c0,再利用当x=4时,y0,则16a+4b+c0,由知,b=2a,得出8a+c0点评:此题主要考查了二次函数图象与系数的关系,关键是熟练掌握二次项系数a决定抛物线的开口方向,当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右(简称:左同右异)常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c)二、填空题1(2012绍兴)教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为,由此可知铅球推出的距离是 m。考点:二次函数的应用。故答案为:10。2(2012扬州)如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形ACD和BCE,那么DE长的最小值是13(2012无锡)若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为y=x2+4x3考点:待定系数法求二次函数解析式。5(2012苏州)已知点A(x1,y1)、B(x2,y2)在二次函数y=(x1)2+1的图象上,若x1x21,则y1y2(填“”、“”或“=”)6(2012深圳)二次函数的最小值是 【答案】5。三、解答题【1.2012临沂】26如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120至OB的位置(1)求点B的坐标;(2)求经过点AO、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由考点:二次函数综合题;分类讨论。解答:解:(1)如图,过B点作BCx轴,垂足为C,则BCO=90,AOB=120,BOC=60,又OA=OB=4,OC=OB=4=2,BC=OBsin60=4=2,点B的坐标为(2,2);(2)抛物线过原点O和点AB,可设抛物线解析式为y=ax2+bx,将A(4,0),B(22)代入,得,解得,此抛物线的解析式为y=x2+x(3)存在,如图,抛物线的对称轴是x=2,直线x=2与x轴的交点为D,设点P的坐标为(2,y),若OB=OP,则22+|y|2=42,解得y=2,当y=2时,在RtPOD中,PDO=90,sinPOD=,POD=60,POB=POD+AOB=60+120=180,即P、O、B三点在同一直线上,y=2不符合题意,舍去,点P的坐标为(2,2)若OB=PB,则42+|y+2|2=42,解得y=2,故点P的坐标为(2,2),若OP=BP,则22+|y|2=42+|y+2|2,解得y=2,故点P的坐标为(2,2),综上所述,符合条件的点P只有一个,其坐标为(2,2),【2.2012菏泽】21如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90,得到ABO(1)一抛物线经过点A、B、B,求该抛物线的解析式;(2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PBAB的面积是ABO面积4倍?若存在,请求出P的坐标;若不存在,请说明理由(3)在(2)的条件下,试指出四边形PBAB是哪种形状的四边形?并写出四边形PBAB的两条性质考点:二次函数综合题。解答:解:(1)ABO是由ABO绕原点O逆时针旋转90得到的,又A(0,1),B(2,0),O(0,0),A(1,0),B(0,2)设抛物线的解析式为:,抛物线经过点A、B、B,解之得,满足条件的抛物线的解析式为.(2)P为第一象限内抛物线上的一动点,设P(x,y),则x0,y0,P点坐标满足连接PB,PO,PB,. 假设四边形的面积是面积的倍,则,即,解之得,此时,即.存在点P(1,2),使四边形PBAB的面积是ABO面积的4倍(3)四边形PBAB为等腰梯形,答案不唯一,下面性质中的任意2个均可等腰梯形同一底上的两个内角相等;等腰梯形对角线相等;等腰梯形上底与下底平行;等腰梯形两腰相等或用符号表示:BAB=PBA或ABP=BPB;PA=BB;BPAB;BA=PB【3. 2012义乌市】24如图1,已知直线y=kx与抛物线y=交于点A(3,6)(1)求直线y=kx的解析式和线段OA的长度;(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足BAE=BED=AOD继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?考点:二次函数综合题。解答:解:(1)把点A(3,6)代入y=kx 得;6=3k,k=2,y=2x(2012义乌市)OA=(3分)(2)是一个定值,理由如下:如答图1,过点Q作QGy轴于点G,QHx轴于点H当QH与QM重合时,显然QG与QN重合,此时;当QH与QM不重合时,QNQM,QGQH不妨设点H,G分别在x、y轴的正半轴上,MQH=GQN,又QHM=QGN=90QHMQGN(5分),当点P、Q在抛物线和直线上不同位置时,同理可得 (7分)(3)如答图2,延长AB交x轴于点F,过点F作FCOA于点C,过点A作ARx轴于点RAOD=BAE,AF=OF,OC=AC=OA=ARO=FCO=90,AOR=FOC,AORFOC,OF=,点F(,0),设点B(x,),过点B作BKAR于点K,则AKBARF,即,解得x1=6,x2=3(舍去),点B(6,2),BK=63=3,AK=62=4,AB=5 (8分);(求AB也可采用下面的方法)设直线AF为y=kx+b(k0)把点A(3,6),点F(,0)代入得k=,b=10,(舍去),B(6,2),AB=5(8分)(其它方法求出AB的长酌情给分)在ABE与OED中BAE=BED,ABE+AEB=DEO+AEB,ABE=DEO,BAE=EOD,ABEOED(9分)设OE=x,则AE=x (),由ABEOED得,()(10分)顶点为(,)如答图3,当时,OE=x=,此时E点有1个;当时,任取一个m的值都对应着两个x值,此时E点有2个当时,E点只有1个(11分)当时,E点有2个(12分)【4.2012杭州】22在平面直角坐标系内,反比例函数和二次函数y=k(x2+x1)的图象交于点A(1,k)和点B(1,k)(1)当k=2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当ABQ是以AB为斜边的直角三角形时,求k的值考点:二次函数综合题。分析:(1)当k=2时,即可求得点A的坐标,然后设反比例函数的解析式为:y=,利用待定系数法即可求得答案;(2)由反比例函数和二次函数都是y随着x的增大而增大,可得k0,又由二次函数y=k(x2+x1)的对称轴为x=,可得x时,才能使得y随着x的增大而增大;(3)由ABQ是以AB为斜边的直角三角形,A点与B点关于原点对称,利用直角三角形斜边上的中线等于斜边的一半,即可得OQ=OA=OB,又由Q(,k),A(1,k),即可得=,继而求得答案解答:解:(1)当k=2时,A(1,2),A在反比例函数图象上,设反比例函数的解析式为:y=,代入A(1,2)得:2=,解得:m=2,反比例函数的解析式为:y=;(2)要使反比例函数和二次函数都是y随着x的增大而增大,k0,二次函数y=k(x2+x1)=k(x+)2k,的对称轴为:直线x=,要使二次函数y=k(x2+x1)满足上述条件,在k0的情况下,x必须在对称轴的左边,即x时,才能使得y随着x的增大而增大,综上所述,k0且x;(3)由(2)可得:Q(,k),ABQ是以AB为斜边的直角三角形,A点与B点关于原点对称,(如图是其中的一种情况)原点O平分AB,OQ=OA=OB,作ADOC,QCOC,OQ=,OA=,=,解得:k=点评:此题考查了二次函数的性质、反比例函数的性质以及直角三角形的性质等知识此题综合性较强,难度较大,注意掌握待定系数法求函数解析式,注意数形结合思想的应用【5.2012烟台】26如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4)以A为顶点的抛物线y=ax2+bx+c过点C动点P从点A出发,沿线段AB向点B运动同时动点Q从点C出发,沿线段CD向点D运动点P,Q的运动速度均为每秒1个单位运动时间为t秒过点P作PEAB交AC于点E(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EFAD于F,交抛物线于点G,当t为何值时,ACG的面积最大?最大值为多少?(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值考点:二次函数综合题。分析:(1)根据矩形的性质可以写出点A得到坐标;由顶点A的坐标可设该抛物线的顶点式方程为y=a(x1)2+4,然后将点C的坐标代入,即可求得系数a的值(利用待定系数法求抛物线的解析式);(2)利用待定系数法求得直线AC的方程y=2x+6;由图形与坐标变换可以求得点P的坐标(1,4t),据此可以求得点E的纵坐标,将其代入直线AC方程可以求得点E或点G的横坐标;然后结合抛物线方程、图形与坐标变换可以求得GE=4、点A到GE的距离为,C到GE的距离为2;最后根据三角形的面积公式可以求得SACG=SAEG+SCEG=(t2)2+1,由二次函数的最值可以解得t=2时,SACG的最大值为1;(3)因为菱形是邻边相等的平行四边形,所以点H在直线EF上解答:解:(1)A(1,4)(1分)由题意知,可设抛物线解析式为y=a(x1)2+4抛物线过点C(3,0),0=a(31)2+4,解得,a=1,抛物线的解析式为y=(x1)2+4,即y=x2+2x+3(2分)(2)A(1,4),C(3,0),可求直线AC的解析式为y=2x+6点P(1,4t)(3分)将y=4t代入y=2x+6中,解得点E的横坐标为x=1+(4分)点G的横坐标为1+,代入抛物线的解析式中,可求点G的纵坐标为4GE=(4)(4t)=t(5分)又点A到GE的距离为,C到GE的距离为2,即SACG=SAEG+SCEG=EG+EG(2)=2(t)=(t2)2+1(7分)当t=2时,SACG的最大值为1(8分)(3)t=或t=208(12分)(说明:每值各占(2分),多出的值未舍去,每个扣1分)点评:本题考查了二次函数的综合题其中涉及到的知识点有待定系数法求二次函数的解析式,待定系数法求一次函数的解析式以及三角形面积的求法【6.2012益阳】20已知:如图,抛物线y=a(x1)2+c与x轴交于点A(,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P(1,3)处(1)求原抛物线的解析式;(2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比(约等于0.618)请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:,结果可保留根号)考点:二次函数的应用。分析:(1)利用P与P(1,3)关于x轴对称,得出P点坐标,利用待定系数法求出二次函数的解析式即可;(2)根据已知得出C,D两点坐标,进而得出“W”图案的高与宽(CD)的比解答:解:(1)P与P(1,3)关于x轴对称,P点坐标为(1,3); (2分)抛物线y=a(x1)2+c过点A(,0),顶点是P(1,3),;(3分)解得;(4分)则抛物线的解析式为y=(x1)23,(5分)即y=x22x2(2)CD平行x轴,P(1,3)在CD上,C、D两点纵坐标为3; (6分)由(x1)23=3,解得:,(7分)C、D两点的坐标分别为(,3),(,3)CD=(8分)“W”图案的高与宽(CD)的比=(或约等于0.6124)(10分)点评:此题主要考查了待定系数法求二次函数的解析式以及二次函数的应用,根据已知得出C,D两点坐标是解题关键【7.2012广州】24如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当ACD的面积等于ACB的面积时,求点D的坐标;(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式考点:二次函数综合题。分析:(1)A、B点为抛物线与x轴交点,令y=0,解一元二次方程即可求解(2)根据题意求出ACD中AC边上的高,设为h在坐标平面内,作AC的平行线,平行线之间的距离等于h根据等底等高面积相等的原理,则平行线与坐标轴的交点即为所求的D点从一次函数的观点来看,这样的平行线可以看做是直线AC向上或向下平移而形成因此先求出直线AC的解析式,再求出平移距离,即可求得所作平行线的解析式,从而求得D点坐标注意:这样的平行线有两条,如答图1所示(3)本问关键是理解“以A、B、M为顶点所作的直角三角形有且只有三个”的含义因为过A、B点作x轴的垂线,其与直线l的两个交点均可以与A、B点构成直角三角形,这样已经有符合题意的两个直角三角形;第三个直角三角形从直线与圆的位置关系方面考虑,以AB为直径作圆,当直线与圆相切时,根据圆周角定理,切点与A、B点构成直角三角形从而问题得解注意:这样的切线有两条,如答图2所示解答:解:(1)令y=0,即=0,解得x1=4,x2=2,A、B点的坐标为A(4,0)、B(2,0)(2)SACB=ABOC=9,在RtAOC中,AC=5,设ACD中AC边上的高为h,则有ACh=9,解得h=如答图1,在坐标平面内作直线平行于AC,且到AC的距离=h=,这样的直线有2条,分别是l1和l2,则直线与对称轴x=1的两个交点即为所求的点D设l1交y轴于E,过C作CFl1于F,则CF=h=,CE=设直线AC的解析式为y=kx+b,将A(4,0),B(0,3)坐标代入,得到,解得,直线AC解析式为y=x+3直线l1可以看做直线AC向下平移CE长度单位(个长度单位)而形成的,直线l1的解析式为y=x+3=x则D1的纵坐标为(1)=,D1(4,)同理,直线AC向上平移个长度单位得到l2,可求得D2(1,)综上所述,D点坐标为:D1(4,),D2(1,)(3)如答图2,以AB为直径作F,圆心为F过E点作F的切线,这样的切线有2条连接FM,过M作MNx轴于点NA(4,0),B(2,0),F(1,0),F半径FM=FB=3又FE=5,则在RtMEF中,ME=4,sinMFE=,cosMFE=在RtFMN中,MN=MNsinMFE=3=,FN=MNcosMFE=3=,则ON=,M点坐标为(,)直线l过M(,),E(4,0),设直线l的解析式为y=kx+b,则有,解得,所以直线l的解析式为y=x+3同理,可以求得另一条切线的解析式为y=x3综上所述,直线l的解析式为y=x+3或y=x3点评:本题解题关键是二次函数、一次函数以及圆等知识的综合运用难点在于第(3)问中对于“以A、B、M为顶点所作的直角三角形有且只有三个”条件的理解,这可以从直线与圆的位置关系方面入手解决本题难度较大,需要同学们对所学知识融会贯通、灵活运用【8. 2012成都】28 (本小题满分l2分) 如图,在平面直角坐标系xOy中,一次函数 (为常数)的图象与x轴交于点A(,0),与y轴交于点C以直线x=1为对称轴的抛物线 ( 为常数,且0)经过A,C两点,并与x轴的正半轴交于点B (1)求的值及抛物线的函数表达式; (2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由; (3)若P是抛物线对称轴上使ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于 ,两点,试探究 是否为定值,并写出探究过程考点:二次函数综合题。解答:解:(1)经过点(3,0),0=+m,解得m=,直线解析式为,C(0,)抛物线y=ax2+bx+c对称轴为x=1,且与x轴交于A(3,0),另一交点为B(5,0),设抛物线解析式为y=a(x+3)(x5),抛物线经过C(0,),=a3(5),解得a=,抛物线解析式为y=x2+x+;(2)假设存在点E使得以A、C、E、F为顶点的四边形是平行四边形,则ACEF且AC=EF如答图1,(i)当点E在点E位置时,过点E作EGx轴于点G,ACEF,CAO=EFG,又,CAOEFG,EG=CO=,即yE=,=xE2+xE+,解得xE=2(xE=0与C点重合,舍去),E(2,),SACEF=;(ii)当点E在点E位置时,过点E作EGx轴于点G,同理可求得E(+1,),SACEF=(3)要使ACP的周长最小,只需AP+CP最小即可如答图2,连接BC交x=1于P点,因为点A、B关于x=1对称,根据轴对称性质以及两点之间线段最短,可知此时AP+CP最小(AP+CP最小值为线段BC的长度)B(5,0),C(0,),直线BC解析式为y=x+,xP=1,yP=3,即P(1,3)令经过点P(1,3)的直线为y=kx+3k,y=kx+3k,y=x2+x+,联立化简得:x2+(4k2)x4k3=0,x1+x2=24k,x1x2=4k3y1=kx1+3k,y2=kx2+3k,y1y2=k(x1x2)根据两点间距离公式得到:M1M2=M1M2=4(1+k2)又M1P=;同理M2P=M1PM2P=(1+k

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论