二次函数教案(全).doc_第1页
二次函数教案(全).doc_第2页
二次函数教案(全).doc_第3页
二次函数教案(全).doc_第4页
二次函数教案(全).doc_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二次函数我们把形如y=ax+bx+c(其中a,b,C是常数,a0)的函数叫做二次函数(quadratic funcion) 称a为二次项系数, b为一次项系数,c为常数项,请讲出上述三个函数解析式中的二次项系数、一次项系数和常数项(一) 做一做1、 下列函数中,哪些是二次函数?(1) (2) (3) (4) (5)2、分别说出下列二次函数的二次项系数、一次项系数和常数项:(1) (2) (3)3、若函数为二次函数,则m的值为 。二次函数的图像(1)教学目标:1、经历描点法画函数图像的过程;2、学会观察、归纳、概括函数图像的特征;3、掌握型二次函数图像的特征;4、经历从特殊到一般的认识过程,学会合情推理。教学重点:型二次函数图像的描绘和图像特征的归纳 二、探索图像1、 用描点法画出二次函数 和图像列表x-2-101241014-4-1-0-1-4引导学生观察上表,思考一下问题:无论x取何值,对于来说,y的值有什么特征?对于来说,又有什么特征? 当x取等互为相反数时,对应的y的值有什么特征? (1) 描点(边描点,边总结点的位置特征,与上表中观察的结果联系起来).(2) 连线,用平滑曲线按照x由小到大的顺序连接起来,从而分别得到和的图像。2、 练习:在同一直角坐标系中画出二次函数 和的图像。3、二次函数()的图像由上面的四个函数图像概括出:(1) 二次函数的图像形如物体抛射时所经过的路线,我们把它叫做抛物线,(2) 这条抛物线关于y轴对称,y轴就是抛物线的对称轴。(3) 对称轴与抛物线的交点叫做抛物线的顶点。注意:顶点不是与y轴的交点。(4) 当时,抛物线的开口向上,顶点是抛物线上的最低点,图像在x轴的上方(除顶点外);当时,抛物线的开口向下,顶点是抛物线上的最高点图像在x轴的 下方(除顶点外)。课堂练习观察二次函数和的图像(1) 填空:抛物线顶点坐标对称轴位 置开口方向(2)在同一坐标系内,抛物线和抛物线的位置有什么关系?如果在同一个坐标系内画二次函数和的图像怎样画更简便? (抛物线与抛物线关于x轴对称,只要画出与中的一条抛物线,另一条可利用关于x轴对称来画)四、例题讲解例题:已知二次函数()的图像经过点(-2,-3)。(1) 求a 的值,并写出这个二次函数的解析式。(2) 说出这个二次函数图像的顶点坐标、对称轴、开口方向和图像的位置。二次函数的图像(2)教学目标:1、经历二次函数图像平移的过程;理解函数图像平移的意义。2、了解,三类二次函数图像之间的关系。3、会从图像的平移变换的角度认识型二次函数的图像特征。教学重点:从图像的平移变换的角度认识型二次函数的图像特征。二次函数的图像和特征: 1、名称 ;2、顶点坐标 ;3、对称轴 ;4、当时,抛物线的开口向 ,顶点是抛物线上的最 点,图像在x轴的 (除顶点外);当时,抛物线的开口向 ,顶点是抛物线上的最 点图像在x轴的 (除顶点外)。在同一坐标系中画出函数图像,的图像。(1) 请比较这三个函数图像有什么共同特征?(2) 顶点和对称轴有什么关系?(3) 图像之间的位置能否通过适当的变换得到? (4) 由此,你发现了什么?三、探究二次函数和图像之间的关系1、 结合学生所画图像,引导学生观察与的图像位置关系,直观得出的图像的图像。教师可以采取以下措施:借助几何画板演示几个对应点的位置关系 ,如:(0,0)(-2,0)(2,2)(0,2);(-2,2)(-4,2)也可以把这些对应点在图像上用彩色粉笔标出,并用带箭头的线段表示平移过程。2、 用同样的方法得出的图像的图像。3、总结二次函数y=a(x+ m)2的图象和性质. ()的图像的图像。函数的图像的顶点坐标是(-m,0),对称轴是直线x=-m4、做一做 (1)、抛物线开口方向对称轴顶点坐标y =2(x+3)2y = -3(x-1)2y = -4(x-3)2(2)、填空:、由抛物线y=2x向 平移 个单位可得到y= 2(x+1)2、函数y= -5(x -4)2的图象。可以由抛物线 向 平移 4 个单位而得到的。3、对于二次函数,请回答下列问题:把函数的图像作怎样的平移变换,就能得到函数的图像?说出函数的图像的顶点坐标和对称轴。第3题的解答作如下启发:这里的m是什么数?大于零还是小于零?应当把的图像向左平移还是向右平移?在此同时用平移的方法画出函数的大致图像(事先画好函数的图像),借助图像有学生回答问题。五、 探究二次函数和图像之间的关系1、在上面的平面直角坐标系中画出二次函数的图像。首先引导学生观察比较与的图像关系,直观得出:的图像的图像。(结合多媒体演示)再引导学生刚才得到的的图像与的图像之间的位置关系,由此得出:只要把抛物线先向左平移2个单位,在向上平移3个单位,就可得到函数的图像。2、做一做:请填写下表:函数解析式图像的对称轴图像的顶点坐标3、 总结的图像和图像的关系()的图像的图像的图像。的图像的对称轴是直线x=-m,顶点坐标是(-m,k) 。口诀:(m、k)正负左右上下移 ( m左加右减 k上加下减)1、函数的图像和函数图像之间的关系。2、函数的图像在开口方向、顶点坐标和对称轴等方面的性质。二次函数的图像(3)教学目标:1、了解二次函数图像的特点。2、掌握一般二次函数的图像与的图像之间的关系。3、会确定图像的开口方向,会利用公式求顶点坐标和对称轴。教学重点:二次函数的图像特征教学难点:例2的解题思路与解题技巧。2对于函数,请回答下列问题:(1)对于函数的图像可以由什么抛物线,经怎样平移得到的?(2)函数图像的对称轴、顶点坐标各是什么?思路:把化为的形式。=在中,m、k分别是什么?从而可以确定由什么函数的图像经怎样的平移得到的?二、探索二次函数的图像特征1、问题:对于二次函数y=ax+bx+c ( a0 )的图象及图象的形状、开口方向、位置又是怎样的?学生有难度时可启发:通过变形能否将y=ax+bx+c转化为y = a(x+m)2 +k的形式 ?=由此可见函数的图像与函数的图像的形状、开口方向均相同,只是位置不同,可以通过平移得到。2、二次函数的图像特征(1)二次函数 ( a0)的图象是一条抛物线;(2)对称轴是直线x=,顶点坐标是为(,)(3)当a0时,抛物线的开口向上,顶点是抛物线上的最低点。当a0时,抛物线的开口向下,顶点是抛物线上的最高点。三、巩固知识例1、求抛物线的对称轴和顶点坐标。四、小结1、函数的图像与函数的图像之间的关系。2、函数的图像在对称轴、顶点坐标等方面的特征。3、函数的解析式类型:一般式:顶点式:二次函数的性质(1)教学目标:1.从具体函数的图象中认识二次函数的基本性质.2.了解二次函数与二次方程的相互关系.3.探索二次函数的变化规律,掌握函数的最大值(或最小值)及函数的增减性的概念,会求二次函数的最值,并能根据性质判断函数在某一范围内的增减性二次函数: y=ax2 +bx + c (a 0)的图象是一条抛物线,它的开口由什么决定呢?补充: 当a的绝对值相等时,其形状完全相同,当a的绝对值越大,则开口越小,反之成立.1.探索填空: 根据下边已画好抛物线y= -2x2的顶点坐标是 对称轴是 , 在 侧,即x_0时, y随着x的增大而增大;在 侧,即x_0时, y随着x的增大而减小. 当x= 时,函数y最大值是_. 当x_0时,y0 3.归纳: 二次函数y=ax2+bx+c(a0)的图象和性质(1).顶点坐标与对称轴(2).位置与开口方向(3).增减性与最值当a 0时,在对称轴的左侧,y随着x的增大而减小;在对称轴的右侧,y随着x的增大而增大;当 时,函数y有最小值 。当a 0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x的增大而减小。当 时,函数y有最大值 4.探索二次函数与一元二次方程 二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象如图所示.(1).每个图象与x轴有几个交点?(2).一元二次方程x2+2x=0,x2-2x+1=0有几个根?验证一下一元二次方程x2-2x+2=0有根吗?(3).二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?归纳: (3).二次函数y=ax2+bx+c的图象和x轴交点有三种情况: 有两个交点, 有一个交点, 没有交点. 当二次函数y=ax2+bx+c的图象和x轴有交点时, 交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.当b2-4ac0时,抛物线与x轴有两个交点,交点的横坐标是一元二次方程0=ax2+bx+c的两个根x1与 x2;当b2-4ac=0时,抛物线与x轴有且只有一个公共点;当b2-4ac0时,抛物线与x轴没有交点。举例: 求二次函数图象y=x2-3x+2与x轴的交点A、B的坐标。结论1:方程x2-3x+2=0的解就是抛物线y=x2-3x+2与x轴的两个交点的横坐标。因此,抛物线与一元二次方程是有密切联系的。即:若一元二次方程ax2+bx+c=0的两个根是x1、x2,则抛物线y=ax2+bx+c与轴的两个交点坐标分别是A( x1,0),B(x2,0)5.例题教学:例1: 已知函数写出函数图像的顶点、图像与坐标轴的交点,以及图像与y轴的交点关于图象对称轴的对称点。然后画出函数图像的草图;(2)自变量x在什么范围内时, y随着x的增大而增大?何时y随着x的增大而减少;并求出函数的最大值或最小值。归纳:二次函数五点法的画法二次函数的性质(2)教学目标:1、掌握二次函数解析式的三种形式,并会选用不同的形式,用待定系数法求二次函数的解析式。2、能根据二次函数的解析式确定抛物线的开口方向,顶点坐标,和对称轴、最值和增减性。3、能根据二次函数的解析式画出函数的图像,并能从图像上观察出函数的一些性质。一、复习1、抛物线的顶点坐标是 ,对称轴是 ,在 侧,即x_0时, y随着x的增大而增大; 在 侧,即x_0时, y随着x的增大而减小;当x= 时,函数y最 值是_。2、抛物线的顶点坐标是 ,对称轴是 ,在 侧,即x_0时, y随着x的增大而增大; 在 侧,即x_0时, y随着x的增大而减小;当x= 时,函数y最 值是_。二、例题讲解例1、根据下列条件求二次函数的解析式:(1)函数图像经过点A(-3,0),B(1,0),C(0,-2)(2) 函数图像的顶点坐标是(2,4)且经过点(0,1)(3)函数图像的对称轴是直线x=3,且图像经过点(1,0)和(5,0)说明:本题给出求抛物线解析式的三种解法,关键是看题目所给条件。一般来说:任意给定抛物线上的三个点的坐标,均可设一般式去求;若给定顶点坐标(或对称轴或最值)及另一个点坐标,则可设顶点式较为简单;若给出抛物线与x轴的两个交点坐标,则用分解式较为快捷。例2已知函数y= x2 -2x -3 , ()把它写成的形式;并说明它是由怎样的抛物线经过怎样平移得到的? (2)写出函数图象的对称轴、顶点坐标、开口方向、最值;(3)求出图象与坐标轴的交点坐标;(4)画出函数图象的草图; (5)设图像交x轴于A、B两点,交y 轴于P点,求APB的面积;(6)根据图象草图,说出 x取哪些值时, y=0; y0.说明:(1)对于解决函数和几何的综合题时要充分利用图形,做到线段和坐标的互相转化;(2)利用函数图像判定函数值何时为正,何时为负,同样也要充分利用图像,要使y0.抛物线开口向 a0.抛物线对称轴在y 轴的 侧b=0抛物线对称轴是 轴b0.抛物线与y轴交于 C=0抛物线与y轴交于 c0.抛物线与x 轴有 个交点=0抛物线与x 轴有 个交点0)当t=时,被开方式169(t-)2+576有最小值576。所以当t=时,S最小值=24(km)答:经过时,两船之间的距离最近,最近距离为24km练习:直角三角形的两条直角边的和为2,求斜边的最小值。二次函数的应用(2)教学目标:1、继续经历利用二次函数解决实际最值问题的过程。2、会综合运用二次函数和其他数学知识解决如有关距离等函数最值问题。3、发展应用数学解决问题的能力,体会数学与生活

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论