




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【典型例题】【例1】 如右图所示,圆锥形容器中装有5升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?分析与解:本题的关键是要找出容器上半部分的体积与下半部分的关系。设圆锥容器的底面积半径为r,则水面半径为。容器的容积为,容器中水的体积为。解:这表明容器可以装8份5升水,已经装了1份,还能装水5(81)=35(升)。【例2】 比较甲、乙两只容器中,哪一只容器盛的水多,多的是少的几倍?(单位:厘米)(1)容器如图1所示;(2)甲、乙两容器相同(如图2),甲容器中水的高度是锥高的,乙容器中水的高度是圆锥高的。分析与解 (1)要想知道甲、乙两只容器哪一只盛的水多,我们只需依据条件分别计算一下甲、乙两只容器的容积各是多少,即可做出比较。通过计算可知,乙容器装的水多,乙容器是甲容器容积的(40002000=) 2倍。(2)我们先分别将两容器内水的体积进行计算。设圆锥的底面半径为r,高为h,则甲容器及乙容器中的水面半径均为,甲容器中无水部分椎体高位,而乙容器中有水部分椎体的高为,分别用、表示两容器中水的体积,则有:由此可知,甲容器中的水多,甲容器中的水是乙容器中的水的倍。【例3】 将一个棱长是20厘米的正方体,旋成一个圆柱体,并且使圆柱体的体积最大,求此时旋去的那部分体积。分析与解 要想知道旋去的那部分体积,我们应首先认识清楚,怎样才能使旋成的圆柱体体积最大?通过分析可以发现,当我们所旋成的圆柱体的底面直径和高均为20厘米时,圆柱的体积最大.即如图3去旋.此时,我们只需计算出正方体的体积及所得到的圆柱体的体积,其差就是所旋去部分的体积。即:旋去的部分的体积约为1720立方厘米。【例4】 如图4中所示图形是一个底面直径是20厘米的装有一部分水的圆柱形容器,水中放着一个底面直径为12厘米,高为10厘米的圆锥体铅锤,当铅锤从水中取出后,容器中的水下降了几厘米?分析与解 因为玻璃容器是圆柱形的,所以铅锤取出后,水面下降部分实际是一个小圆柱,这个圆柱的底面与玻璃容器的底面一样,是一直径为20厘米的圆,它的体积正好等于圆锥体铅锤的体积.这个小圆柱的高就是水面下降的高度。因为铅锤的体积为:设水面下降的高度为x厘米,则小圆柱的体积为:V2=(202)2x=100x(立方厘米)根据小圆柱的体积等于铅锤的体积有:120=100x解此方程得:x=1.2(厘米)答:铅锤取出后,容器中的水面下降了1.2厘米。【例5】 横截面直径为20厘米的一根圆钢,截成两段后,两段表面积的和为7536平方厘米,求原来那根圆钢的体积是多少(=3.14)?分析与解 根据圆柱体的体积公式,体积等于底面积乘以高.由于底面直径已经知道,故只需依据条件求出圆钢的长度.假设圆钢长为x厘米,由于将圆钢截成两段后,两段表面积的和等于圆钢的侧面积加上四个底面圆的面积,所以有下面的式子:2(202)x+4(202)2=20x+400依据题中给出的已知条件,可得方程:20x+400=7536解方程:圆钢的体积为:(202)210031400(立方厘米)答:原来那根圆钢的体积约为31400立方厘米。【例6】 用一块长30厘米,宽20厘米的长方形铁皮做圆柱形容器的侧面,再用另一块铁皮做底,怎样做才能使这个圆柱形容器的容积最大?分析与解 我们要回答上述问题,实际上只需考虑两个方面,即以长方形的长做为圆柱形容器的高,还是以长方形的宽做为圆柱形容器的高?比较两种情况下圆柱形容器的体积,即可确定方案。若以长方形的长为高,则长方形的宽即为圆柱形容器的底面周形,所以圆柱形容器的底面半径为:此时容器的容积为:若以长方形的宽为高,则长方形的长即为圆柱形容器的底面周长,此时,圆柱形容器的底面半径为:通过上述计算,我们可以知道,用长方形较短的一边做为圆柱形容器的高时,圆柱形容器的容积大。【例7】将一个底面半径为20厘米、高27厘米的圆锥形铝块,和一个底面半径为30厘米、高20厘米的圆柱形铝块,熔铸成一底面半径为15厘米的圆柱形铝块,求这个圆柱形铝块的高。解:被熔的圆锥形铝块的体积:被熔的圆柱形铝块的体积:30220=18000(厘米3)。 熔成的圆柱形铝块的高:(360018000)(152) =21600225=96(厘米)。 答:熔铸成的圆柱体高96厘米。【例8 】皮球掉进一个盛有水的圆柱形水桶中。皮球的直径为15厘米,水桶底面直径为60厘米。皮球有的体积浸在水中。问:皮球掉进水中后,水桶中的水面升高了多少厘米?解:皮球的体积是水面升高的高度是4509000.5(厘米)。答:水面升高了0.5厘米。【解题在于实践】一有大、小两种不带盖的圆柱水桶,它们的表面积的和是5433平方分米,小桶和大桶的用料面积的比是1:2,小桶的底面周长是62.8分米,大桶的底面周长是94.2分米.求大小两个桶的侧面积各是多少?解答:大、小桶侧面积分别是2915.5和1497平方分米。先用按比例分配的方法,大,小桶表面积分别为1811平方分米,3622平方分米,然后各去底面积就行了.二把一块长30厘米,宽20厘米,高5厘米的长方形铝锭,和一底面周长为37.68(厘米),高30厘米的圆柱形铝块,熔铸成一底面圆半径为13厘米的圆锥体铝块,求这个圆锥体铝块的高是多少?(=3.14)分析与解 要想求出最终所得圆锥体的高度,只要能确定其体积就可办到.而圆锥体是用两个不同形状的几何体熔铸而成的,故其体积就等于长方体的体积与圆柱体体积的和.而长方体的长、宽、高,圆柱体的底面周长和高都是已知的,所以长方体的体积及圆柱体的体积是可计算的。 长方体铝锭的体积为:30205=3000(立方厘米)圆柱体的体积为:根据题中所述,圆锥体的体积等于长方体体积与圆柱体体积的和,列方程得解得: x36.14(厘米)答:这个圆锥体铝块的高为36.14厘米。三有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图)。如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?分析与解:需要涂漆的面有圆柱体的下底面、外侧面、上面的圆环、圆孔的侧面、圆孔的底面,其中上面的圆环与圆孔的底面可以拼成一个与圆柱体的底面相同的圆。涂漆面积为四有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是30分米3。现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米(见右图)。问:瓶内现有饮料多少立方分米?分析与解:瓶子的形状不规则,并且不知道底面的半径,似乎无法计算。比较一下正放与倒放,因为瓶子的容积不变,装的饮料的体积不变,所以空余部分的体积应当相同。将正放与倒放的空余部分变换一下位置,可以看出饮料瓶的容积应当等于底面积不变,高为 205=25(厘米)的圆柱体的体积,推知饮料占容积的,所以瓶内有饮料(立方分米)悬赏一个底面是正方形的容器里放着水,从里面量边长14厘米,水的高度是8厘米。把一个铁质实心圆锥直立在容器里以后,水的高度上升到12厘米,正好是圆锥高的。圆锥的底面积是多少?解答 :112平方厘米.解:圆锥水上部分的体积是圆锥体积的() 的立方=1/8,圆锥水下部分的体积是圆锥体积的7./8,所以圆锥的体积为1414(12-8)7/8=896(立方厘米)圆锥的高是12=24(厘米),圆锥的底面积是896324=112(平方厘米).一、填空:1、5.4平方分米( )平方厘米 ; 1.05立方米( )升 ; 240立方厘米( )立方分米 ; 10.01升( )毫升 。2、圆柱的上、下两面都是( )形,而且大小( );圆柱的高有( )条,圆锥的高有( )条。3、一个圆柱体,如果把它的高截短了3厘米,表面积就减少了94.2平方厘米,体积就减少( )立方厘米。4、一个圆锥的底面积是40平方厘米,高12分米,体积是( )立方厘米。5、一个圆柱的底面半径是3分米,高2分米,它的侧面积是( ),表面积是( ),体积是( )。6、一个圆柱的底面周长6.28厘米,高是3厘米,它的体积是( )立方厘米。7、一个圆柱和一个圆锥等底等高,如果圆柱的体积是18立方分米,那么圆锥的体积是( )立方分米;如果圆锥的体积是18立方分米,那么圆柱的体积是( )立方分米;如果它们的体积相差18立方分米,那么圆锥的体积是( )立方分米,圆柱的体积是( )立方分米。8、把棱长为2分米的正方体木块,削成一个最大的圆锥,圆锥的体积约是( )立方分米。(结果保留两位小数)9、在一个高24厘米的圆锥形量杯里装满了水,如果将这些水倒入与它底面积相等的圆柱形量杯中,水面高( )厘米。10、一根长4米,横截面半径为2分米的圆柱形木料截成同样长的5段,表面积比原来增加( )平方分米。二、选择题:1、右图中的正方体、圆柱和圆锥底面积相等,高也相等。下面哪句话是正确的?( )A、圆柱的体积比正方体的体积小一些。B、圆锥的体积是正方体的。C、圆柱体积与圆锥体积相等。2、一个圆柱和一个圆锥的底面直径相等,圆锥的高是圆柱的3倍,圆锥的体积是15立方分米,圆柱的体积是( )立方分米。A、45 B、15 C、53、圆柱的底面半径和高都乘3,它的体积应乘( )。A、3 B、6 C、9 D、274、用一根小棒粘住直角三角形的一条直角边,旋转一周,这个三角形转动后产生的图形是( )。 A、三角形 B、圆形 C、圆锥 D、圆柱5、一个圆柱体杯中盛满15升水,把一个与它等底等高的铁圆锥倒放入水中,杯中还有( )水。 A、5升 B、7.5升 C、10升 D、9升6、把一个圆柱的底面平均分成若干个扇形,然后切开拼成一个近似的长方体。下面哪句话是正确的?( ) A、表面积和体积都没变 B、表面积和体积都发生了变化 C、表面积变了,体积没变 D、表面积没变,体积变了三、应用题1、一根长2m的圆柱形木头,截去2分米的一段小圆柱后,表面积减少了12.56平方分米,那么这根木头原来的体积是多少?2、将一块长方形铁皮,利用图中阴影的部分,刚好制成一个油桶,求这个油桶的体积。3、将一块长10cm、宽6cm、高8cm的长方体木块,切割成体积尽可能大的圆柱体木块,求这个圆柱体木块的体积。4、小明新买了一支净含量54cm3的牙膏,牙膏的圆形出口的直径为6mm,他早晚各刷一次牙,每次挤出的牙膏长约2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 华夏银行广州市越秀区2025秋招半结构化面试15问及话术
- 光大银行大庆市萨尔图区2025秋招金融科技岗笔试题及答案
- 农业银行笔试题库及答案
- 民政局笔试题型及答案
- 2025安徽黄山市祁门县国有投资集团有限公司人才招聘拟录用考试历年参考题附答案详解
- 广东江门台山市应急管理局招聘笔试备考题库参考答案详解
- 保安员考试考试彩蛋押题附答案详解(精练)
- 平安银行福州市平潭县2025秋招数据分析师笔试题及答案
- 浦发银行太原市晋源区2025秋招金融科技岗笔试题及答案
- 2024年计算机二级过关检测试卷带答案详解(综合卷)
- 教师岗位聘任申请书模板合集
- 2025年贵州省毕节市辅警招聘考试题库及答案
- 2025重庆市公安局江北区分局辅警招聘60人考试参考题库及答案解析
- 巴中市恩阳区2025年专项招聘卫生专业技术人员的(50人)考试参考题库及答案解析
- 车规级芯片设计-洞察及研究
- 道路运输业安全培训课件
- 一年级新生家长会校长讲话:习惯奠基成长路家校同行护萌娃
- 2025【粮食购销合同范本】粮食购销合同
- 德邦防御性驾驶培训课件
- 煤场安全生产知识培训课件
- 2025-2026学年人教版(2024)小学体育与健康二年级全一册《防溺水知危险》教学设计
评论
0/150
提交评论