通信系统仿真.doc_第1页
通信系统仿真.doc_第2页
通信系统仿真.doc_第3页
通信系统仿真.doc_第4页
通信系统仿真.doc_第5页
已阅读5页,还剩51页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

通信系统仿真姓名:乔钟华 学号:36012103系院:计算机与通信工程学院专业:移动通信 指导老师:朱东进日期:2013年6月23日 实训1 MATLAB软件操作入门一、 实验目的1、 熟悉MATLAB主界面及开发环境2、 熟悉MATLAB矩阵输入与运算3、 熟悉MATLAB基本图形绘制命令二、 实验设备微型计算机一台、MATLAB仿真软件一套三、 实验原理MATLAB软件的开发坏境除了包括用户界面,如命令窗口、命令历史窗口、当前路径窗口、工作空间窗口等窗口外,还有M文件编辑器和在线帮助浏览器等。MATLAB是以矩阵作为基本编程单元的一种程序设计语言,矩阵运算在MATLLAB中非常简单,它往往只需几句语句,即可完成相应的运算,无需像其它软件中编制繁琐而容易出错的循环程序。通过矩阵的输入及运算训练,在掌握矩阵相关知识的同时,学会M文件的建立和运行。MATLAB有较强的绘图功能,可以用简单的语句便可完成二维和三维图形的绘制。在开始使用MATLAB时,可以在命令窗口中键入DEMO命令,它将启动MATLAB的演示程序,用户可在此演示过程中领略MATLAB所提供的强大运算和绘图功能。四、实验内容1、矩阵的表示和输入例题演示(1)方法一:在命令窗口中直接输入矩阵 在命令窗口中矩阵的输入用下列方法: A=1 1 1; -1 -2 -3; 1 4 9 或者用逗号代替空格.输入完后,按回车键,屏幕上显示: A = 1 1 1 -1 -2 -3 1 4 9(2)方法二:在M文件中输入矩阵选择菜单中filenewM-file输入: A=1, 2, 3; 4, 5, 6; 7, 8, 9 B=9, 8, 7; 6, 5, 4; 3, 2, 1保存名为al的M的文件,退出编辑环境,此时在命令窗口中键入al命令就可调出A和B矩阵。结果为:A = 1 1 1 -1 -2 -3 1 4 9B = 9 8 7 6 5 4 3 2 12、矩阵的基本运算 例题演示已知 A=1, 2, 3; 4, 5, 6; 7, 8, 9 B=9, 8, 7; 6, 5, 4; 3, 2, 1求矩阵C=A+B?(1)方法一: 直接在命令窗口中计算 输入 : A=1, 2, 3; 4, 5, 6; 7, 8, 9;回车 B=9, 8, 7; 6, 5, 4; 3, 2, 1;回车 C=A+B 回车 结果: C = 10 10 10 10 10 10 10 10 10(2)方法二: 在M文件中键入下列语句 A=1, 2, 3; 4, 5, 6; 7, 8, 9 B=9, 8, 7; 6, 5, 4; 3, 2, 1 C=A+B 保存为a2文件,并退出编辑环境,在命令窗口中键入文件名a2命令,屏幕上为出现A.B.C矩阵。 学生实验内容 运用M文件编写计算C=A.*B,D=A*B的小程序,文件名为a3,并且比较C和D计算结果。3、 函数波形的绘制 例题演示(1)画出连续信号f(t)=3-2*e-t(0t6)的波形 (2)画出离散信号f(k)=3k(0k6)的波形 程序代码t=0:0.1:6; y1=3-2*exp(-t);subplot(121)plot(t,y1);title(3-y1=3-2exp(-t)k=0:1:6;y2=3.k;subplot(122)stem(k,y2)title(3-y2=3k) 运行波形注意:plot是常用的绘制连续信号波形的函数,stem是绘制离散信号波形的函数。 学生实验内容运用MATLAB编写程序绘制函数f(t)=3*e-2t+4*e-t(t0;f(k)=sin(k/8)0k16的波形t=0:0.1:6y1=3*exp(-2*t)+4*exp(-t);subplot(121)plot(t,y1)title(3-y1)k=0:1:16;y2=sin(pi*k/8);subplot(122)stem(k,y2)title(3-y2)五、实训小结 通过本次实训的操作与学习,我们对MATLAB有了一定的了解,熟悉了MATLAB主界面以及它的开发环境。通过MATLAB实现了对矩阵的输入与运算,并且掌握了一定的MATLAB的基本图形的绘制命令,进一步的提高了我们对MATLAB的理解能力。 实训2 MATLAB中各信号的表示方法一、 实验目的学会用MATLAB语言来表示信号及实现可视化二、 实验设备微型计算机一台、MATLAB仿真软件一套三、 实验原理信号按照自变量的取值是否连续可分为连续时间信号和离散时间信号。严格意义上来说,MATLAB数值计算的方法并不能处理连续信号,而是通过在等时间间隔点得取样值来近似表示的,即当取样时间间隔足够小时,此时较多的抽样值就能较好地近似表示连续信号。抽样间隔越小,连续信号表征准确性越好。那么,离散信号与连续信号的表示不同之处在哪呢?即连续信号自变量取值是连续的,离散信号的自变量取值是离散的,且必须是整数;可视化命令不一样,连续信号用plot命令,而离散信号用stem命令。同样,MATLAB软件提供了许多表征信号的内部函数,对于连续时间信号而言,诸如正余弦信号、指数信号和抽样信号等,对于离散信号而言,有单位冲激信号、单位阶跃信号等,为信号的表示提供极大的方便。那么,复杂的混合信号就可以通过 简单的函数的算术运算来获得。四、 实验内容1、 典型连续信号例题演示 (1)正弦信号正弦信号的一般形式为:f(t)=Ksin(wt+)或f(t)=Kcos(wt+),例如绘制f(t)=3sin(t+/4),0t6的波形。方法一(冒号表达式法) 程序代码k=3;w=pi;phi=pi/4;t=0:0.5:6; %抽样间隔为0.5ft=k*sin(w*t+phi);plot(t,ft),grid onaxis(0,6,-3,3.2)xlabel(t),ylabel(t)title(3-正弦信号)运行波形方法二(符号表达式法) 程序代码ft=sym(3*sin(pi*t+pi/4);ezplot(ft,0,6),grid onaxis(0,6,-3.2,3.2)xlabel(t),ylabel(ft)title(3-正弦信号)运行波形两种方法都可以来产生信号,区别在于:冒号表达式法波形光滑度受取样间隔影响,而符号表达式法,能较光滑绘制信号波形。(2)矩形脉冲信号矩形脉冲信号在MATLAB软件中用rectpuls函数来实现,语句格式为:y=reptculs(t,width),结果产生一个幅度为1,宽度为width,且以t=0为对称轴的矩形脉冲信号,width缺省值为1。产生下列矩形脉冲信号 2 0t1 f(t)= 0 t1程序代码t=-2:0.01:3;t0=1.0;width=2;ft=3*rectpuls(t-t0,width);plot(t,ft),grid onaxis(-2 3 -0.5 3.2)title(3-矩形脉冲信号)运行波形 周期性矩形信号或方波,用函数square产生,语句格式为y=square(t,DUTY),产生一个周期为2pi、幅值为+/-1的周期性矩形信号或方波。其中DUTY为占空比DUTY%,缺省值为0.5.产生频率为20GHz、占空比为30%的周期方波信号 程序代码t=0:0.001:0.3;ft=square(2*pi*10*t,30);plot(t,ft),grid onaxis(0.03 -1.2 1.2)title(3-周期方波信号)(3) 单位阶跃信号 1 t0 u(t)= 0 tt=-2:0.01:6; ft=(t=0); plot(t,ft),grid on; axis(-2 6 -0.2 1.2);title(3-单位阶跃信号)方法二 (符号表达式法)ft=sym(heaviside(t);ezplot(ft,-2 6),grid on;axis(-2 6 -0.2 1.2);title(3-单位阶跃信号)方法三 (定义函数法)function f=uCT(t)f=(t=0) %存为M文件,用于以后调用。t=-2:0.01:6;ft=uCT(t);plot(t,ft),grid on;axis(-2 6 -0.2 1.2);title(3-单位阶跃信号)运行波形(4)三角波脉冲信号 非周期三角波脉冲信号在MATLAB中可以用函数tripuls来表示,其语句格式 ft=tripuls(t,width,skew)上述函数格式用来产生一个幅度为1、宽度为width、以t=0为中心两边分别展开width/2的宽度大小,且斜度为skew的三角波脉冲信号。其中,width的默认值为1,skew取值范围为-1+1(若为0,即为对称三角波脉冲信号),且最大幅度值1出现在t=(width/2)*skew的位置。若要产生一个幅度为2,宽度为6,斜率为-1/2的非周期三角波脉冲信号,且绘制波形。 程序代码 t=-4:0.01:4 ft=2*tripuls(t,6,-0.5); plot(t,ft),grid on axis(-4 4 -0.2 2.2); title(3-三角脉冲信号)运行波形如果要绘制周期性三角波脉冲信号,可以运用sawtooth函数来实现。其格式为:ft=sawtooth(t,width)。用来产生一个周期为2pi,最大峰值为1的周期三角波信号。Width取值范围为01之间,指定一个周期内ft最大值出现位置,width是该位置横坐标与周期的比值。学生实验内容 1)、编写绘制Sa(t)=sinc(t)/t,-10t10信号的波形的MATLAB程序,改变抽样间隔观察波形的变化,并记录运行曲线。 (运用两种以上方法解答)k=1;w=1;phi=0;t=-10:0.01:10;ft=k*sinc(w*t+phi);plot(t,ft),grid onaxis(-10 10 -2 2 2)xlabel(t),ylabel(ft)title(3-正弦波形)t=-10:0.01:10k=1;w=1;phi=0ft=k*sinc(w*t+phi);plot(t,ft),grid onaxis(-10,10,-1,1)xlabel(3-t),ylabel(3-f1) 2)、编写绘制f(t)=u(t+0.5)-u(t-0.5)的波形。(运用两种以上方法解答)t=-2:0.01:6ft=uCT(t+0.5)-uCT(t-0.5)plot(t,ft),grid onaxis(-2 6 -0.2 1.2)title(3-实训)t=-2:0.01:6f1=(t=-0.5)f2=(t=0.5)f=f1-f2plot(t,ft),grid onaxis(-2 6 -0.2 1.2)title(3-实训)ft=sym(heaviside(t+0.5)-heaviside(t-0.5);ezplot(ft,-2 6),grid onaxis(-2 6 -0.2 1.2)title(3-实训)-2-10123456-0.200.20.40.60.813-实训2、典型离散信号 例题演示 (1)单位阶跃信号 1 n0 u(n)= 0 n=0); %存为M文件,用于以后调用。 n=-4:6; x=uDT(n) stem(n,x,fill) ,xlabel(n),grid on title(单位阶跃序列) axis(-4 6-0.2 1.2)运行波形(2)单边指数信号x(n)=anu(n)程序代码n=0:12a1=1.6;a2=-1.6;x1=a1.n;x2=a2.n;subplot(121)stem(n,x1,fill),grid onxlabel(n),title(x(n)=1.6n)subplot(122)stem(n,x2,fill),grid onxlabel(n),title(x(n)=(-1.6)n)运行波形(3)正弦信号x(n)=sin(n wo+)程序代码n=0:29; x=sin(pi/8*n)stem(n,x,fill),xlabel(n),grid ontitile(正弦序列)axis(0,30,-1.2,1.2);运行波形(4) 单位冲激信号 1 n=0(n)= 0 n0程序代码function y=impDT(n)y=(n=0);n=-5:5;x=impDT(n);stem(n,x,fill),xblabel(n),grid ontitle(单位冲激序列)axis(-5 5 -0.2 1.2);运行波形学生实验内容1)、当单边指数信号的底数改为0.6时,编写MATLAB程序绘制其波形并与例题演示作比较。n=0:12a1=0.6;x1=a1.n;subplot(121)stem(n,x1,fill),grid onxlabel(n),title(x(n)=0.6n)2)、编写MATLAB程序绘制函数y(n)=0.8nu(n)-u(n-8)的波形。n=-10:10a=0.8x=(impDT(n)-impDT(n-8)*a.8)stem(n,x,fill),xlabel(n),grid onaxis(-10 10 -1.2 1.2)title(3-实训)-10-8-6-4-20246810-1-0.8-0.6-0.4-0.200.20.40.60.81n3-实训五、 实验小结通过本此实验,我们学会了用MATLAB语言来表示信号以及实现可视化。根据不同的方法来表示同一种波形符号,同时,我们对连续时间信号以及离散时间信号有了更为清晰的了解。 实训3 信号的幅度调制及MATLAB实现一、 实验目的1、 掌握幅度调制的原理2、 对频谱产生初步认识3、 熟悉使用MATLAB软件来分析信号的调制问题及可视化二、 实验设备微型计算机一台、MATLAB仿真软件一套三、 实验原理设信号f(t)的频谱为F(jw),现将f(t)乘以载波信号cos(w0t),得到高频的已调信号y(t),即:其中,f(t)称为调制信号。实现信号调制的原理如图1所示 f(t) y(t) cos(w0t)图1 幅度调制原理图从频域上看,已调制信号y(t)的频谱为原调制信号f(t)的频谱搬移到w0处,幅度降为原F(jw)的1/2,即:f(t) cos(w0t)1/2Fj(w+w0)+F(w-w0)上式即为调制原理,也是傅立叶变换性质中“频移特性”的一种特别情形。这里采用的调制方法为抑制载波方式,即y(t)的频谱中不含有cos(w0t)的频率分量。MATLAB提供了专门的函数用于实现信号的调制。语句格式为:y=modulate(x,Fc,Fs,method)y,t=modulate(x,Fc,Fs)其中,x被调信号,Fc为载波频率,Fs为信号x的采样频率,method为所采用的调制方式,若采用幅度调制、双边带调制、抑制载波调制,则method为am或amdsd-sc。其语句格式为:y=x*cos(2*pi*Fc*t)其中,y为已调信号,t为函数计算时间间隔向量。在MATLAB的实现程序中,为了观察f(t) 及y(t)的频谱,可使用“信号处理工具箱函数”中估计信号的功率谱密度psd(),其格式是:Px,f=psd(x,Nfft,Fs,window,noverlap,dflag)其中,是被调信号(即本例中的f(t)),Niff指定快速付式变换FFT的长度,Fs为对信号的采样频率。后面三个参数的意义将设计信号处理的更深的知识,在此暂不介绍。四、 实验内容例题演示设信号f(t)=sin(100t),载波为频率为400Hz的余弦信号。试用MATLAB实现调幅信号y(t),并观察y(t)的频谱。程序代码Fs=1000;Fc=400;N=1000;n=0:N-2;t=n/Fs;x=sin(2*pi*50*t);subplot(221)plot(t,x);xlabel(t(s);ylabel(x);title(3-被调信号);axis(0 0.1 -1 1)Nfft=1024;window=hamming(512);noverlap=256;dflag=none;Pxx,f=psd(x,Nfft,Fs,window,noverlap,dflag);subplot(222)plot(f,Pxx)xlabel(频率(Hz);ylabel(功率谱(X);title(被调信号的功率谱)gridy=modulate(x,Fc,Fs,am);subplot(223)plot(t,y)xlabel(t(s);ylabel(y);axis(0 0.1 -1 1)title(已调信号)Pxx,f=psd(y,1024,Fs,window,noverlap,dflag);subplot(224)plot(f,Pxx)xlabel(频率(Hz);ylabel(功率谱(Y);title(已调信号的功率谱);grid运行波形学生实验内容设f(t)=u(t+1)-u(t-1),f1(t)=f(t)(cos10t),试用MATLAB画出f(t)、f1(t)的时域波形及其幅度调制频谱。程序代码;R=0.005;t=-1.2:R:1.2;f=Heaviside(t+0.5)- Heaviside(t-0.5);f1=f.*cos(10*pi*t);subplot(221)plot(t,f)xlabel(30-t)ylabel(3-f(t);subplot(222);plot(t,f1);xlabel(3-t);ylabel(3-f1(t)=f(t)*cos(10*pi*t);W1=40;N=1000;k=-N:N;W=k*W1/N;F=f*exp(-j*t*W)*R;F=real(F);F1=f1*exp(-j*t*W)*R;F=real(F1);Subplot(223);plot(W,F);xlabel(3-w);ylabel(3-F(jw);subplot(224);plot(W,F1);xlabel(3-w);ylabel(3-F1(jw);理解所给程序代码,记录运行波形图。实验小结通过本次实验的学习以及多次的练习,在MATLAB的基础上我们掌握了对于幅度是怎样调制的以及它的基本原理。对频谱的产生有了一定的认识和了解,更加熟悉了MATLAB软件来分析信号的调制以及实现它的可视化。实训四 信号抽样及抽样定理一、实验目的 1、熟悉使用MATLAB软件来对信号进行采样。2、熟悉使用MATLAB软件来对信号进行重建。二、实验设备微型计算机一台、MATLAB仿真软件一套三、实验原理1、连续信号采集对某一连续时间信号f(t)的采样原理图为 f(t) fs(t) Ts(t) 图一 信号采样原理由图可知,fs=f(t)* Ts(t),其中,单位激冲采样信号Ts(t)的表达式为: Ts(t)= (t-nTs)其傅里叶变换为 ,其中=2/T ,设F(j )为f(t)的傅里叶变换,fs(t)的频谱为Fs(j ),由傅里叶变换的卷积定理,有:fs(t)=f(t) Fs(j ) =1/2 = 假定f(t)是频带受限信号,带宽为 ,即当 时,f(t)的频谱F(j )=0,则f(t)经过采样后的频谱Fs(j )就是F(j )在频率轴上搬移至0, ,2 n 处。因此,当 2 时 ,频谱不会发生混叠;而当 2 时,频谱发生混叠。2、信号回复设信号f(t)被采样后形成的采样信号为fs(t)信号的重构是指由fs(t)处理后,恢复出原来的信号f(t)的过程,英雌又称为信号回复。设f(t)为带限信号,带宽为 ,经采样后的频谱为F s(j )。设采样频率 2 ,则Fs(j )是以 为周期的谱线。现取一个频率特性为 Ts 的理想低通滤波器与Fs(j )相乘,得到的频谱即为源信号的频谱F(j )。根据时域卷积定理,有: f(t)=h(t)*fs(t)其中,因此,得到:上式即为用f(nTs)表达f(t)的表达式,其中抽样函数Sa( t)为内插函数。五、 实验内容例题演示取信号f(t)=Sa(t)=sin(t)/t作为被采样的信号,其 Ts 1 即信号的带宽 =1。当采样频率 =2 时被称为临界采样(取 = )。临界采样状态下实现对信号Sa(t)的采样即由该采样信号恢复Sa(t)。程序代码clear;wm=1;wc=wm;Ts=pi/wm;ws=2*pi/Ts;n=-100:100;nTs=n*Ts;f=sinc(nTs/pi);Dt=0.005;t=-15:Dt:15;fa=f*Ts*wc/pi*sinc(wc/pi)*(ones(length(nTs),1)*t-nTs*ones(1,length(t);error=abs(fa-sinc(t/pi);t1=-15:0.5:15;f1=sinc(t1/pi);subplot(3,1,1);stem(t1,f1);xlabel(kTs);ylabel(f(kTs);title(sa(t)=sinc(t/pi)临界采样信号);subplot(3,1,2);plot(t,fa);xlabel(t);ylabel(fa(t);title(由sa(t)=sinc(t/pi)的临界采样信号重构sa(t);grid;subplot(3,1,3);plot(t,error);xlabel(t);ylabel(error(t);title(临界采样信号与原信号的误差error(t)运行波形学生实验内容设信号f(t)=Sa(t)=sin(t)/t,在取样间隔分别为Ts=0.7(令 =1, =1.1)和Ts=1.5(令 =1, = )的两种情况下,对信号f(t)进行采样,试编出MATLAB程序代码,并会出采样信号波形、由采样信号得到的重构信号波形以及两信号的绝对误差波形。六、 实验小结通过这次的实验,我们熟悉了使用MATLAB软件来对信号进行采样和重建,结合已学的通信原理抽样定理实验,理解和掌握了抽样定理内涵及相关过程,能运用MATLAB软件编写所给题目的程序,并画出波形。实训五 Simulink建模与仿真基础一、实验目的1、学会运用MATLAB软件进行电路建模与仿真2、学会运用Simulink建模求解微分方程二、实验设备微型计算机一台、MATLAB仿真软件一套三、实验原理从Simulink这个词表面,由simu和link组成,“Simu”是指仿真,而“Link”是指连接。它与MATLAB语言的主要区别在于,其与用户交互接口是基于Windows的模型化图形输入,即Simulink是面向框图的仿真软件,其结果是使得用户可以把更多的精力投入到系统模型的构建,而非语言的编程上。Simulink是实现动态系统建模和仿真的集成环境,其主要功能是指对动态系统进行仿真和分析,预先模拟实际系统的特性和响应,根据设计和使用的要求,对系统经行修改和优化,以提高系统的性能,实现高效开发系统的目标。四、实验内容例题演示 运用Simulink求解二阶微分方程x+1/5x+2/5x=1/5u(t),u(t)是单位阶跃函数。方法一:运用积分模块(核心思想:x经积分后得到x,再经积分得到x,x和x经代数运算获得x)(1) 改写微分方程为x=1/5u(t)-1/5x-2/5x。(2) 运用Simulink库中的积分等模块创建模型,如下图所示。(3) 示波器结果如下图 方法二:运用传输函数模块(核心思想:把微分方程经过Laplace变换,求解出其传输函数H(s)然后进行Simulink建模与仿真)(1) 对微分方程进行Laplace变换,得:s2X(s)+1/5sX(s)+2/5X(s)=1/5U(s)整理后得出其传输函数H(s)=X(s)/U(s)= 0.2/(s2+0.2s+0.4)(2) 运用Simulink中的传输函数模块建立模型,如下图所示。 U(t) Transfer Fcn Sxope(3) 示波器运行结果如下图学生实验内容 已知某系统的传输函数是H(s)=1/s2+4s+8,用Simulink建立系统模型,对系统的阶跃响应进行仿真。并用信号发生器产生一个幅度为2V,频率为0.5Hz的正弦波,并叠加一个0.1V的噪声信号,将叠加后的信号加入到系统的输入端,将系统处理后的信号显示在示波器上并传送到工作空间。六、 实验小结通过这次实验,我学会了运用MATLAB软件进行电路建模与仿真,学会运用Simulink建模求解微分方程。实训六 2ASK的仿真一、实验目的1、学会运用simulink软件对基带信号进行2ASK调制过程进行仿真与建模。2、学会运用simulink软件对2ASK信号解调过程进行仿真与建模。二、实验设备微型计算机一台、MATLAB仿真软件一套三、实验原理在数字基带传输系统中,为了使数字基带信号能够在信道中传输,要求信道应具有低通形式的传输特性。然而,在实际信道中,大多数信道具有带通传输特性,数字基带信号不能直接在这种带通传输特性的信道中传输。必须用数字基带信号对载波进行调制,产生各种已调数字信号。调制器 信道 解调器基带信号输入 基带信号输出 噪声源数字调制与模拟调制原理是相同的,一般可以采用模拟调制的方法实现数字调制。但是,数字基带信号具有与模拟基带信号不同的特点,其取值是有限的离散状态。这样,可以用载波的某些离散状态来表示数字基带信号的离散状态。基本的三种数字调制方式是:振幅监控(ASK),移频监控(FSK)、移相监控(PSK或DPSK)。振幅键控是正弦载波的幅度岁数字基带信号二变化的数字调试。当数字基带信号为二进制时,则为二进制振幅键控。设发送的二进制符号序列由0,1序列组成,发送0符号的概率为P,发送1符号的概率为1-P,且互相独立,该二进制符号序列可表示为:s(t)=ang(t-nT)其中:O , 发送概率为 Pan = 1 , 发送概率为-PTs是二进制基带信号时间间隔,g(t)是持续时间为T上的矩形脉冲:1, 0tT g(t)=0, 其他t则二进制振幅键控信号可表示为:e2ASK(t)= ang(t-nT)coswct二进制振幅键控信号时间波形如图6-2所示。可看出2ASK信号的时间波形e2ASK(t)随二进制基带信号s(t)通断变化,所以又称为通断键控信号(OOK信号)。二进制振幅监控信号的产生方法如图6-3所示,图(a)是采用模拟相乘的方法实现,图(b)是采用数字键控的方法实现。由图6-2可看出,2ASK信号与模拟调制中的AM信号类似。所以,对2ASK信号也能采用非相干解调(包络检测法)和想干借条(同步检测法),其相应原理方框图6-4所示2ASK信号非相干解调过程的时间波形如图6-5所示:一、 实验内容1、 信号调制仿真模拟(1) 建立模型方框图2ASK信号调制的模型方框图由DSP模块中的sinwave信号源、方波信号源、相乘器等模块组成,Simulink模型图如下所示:其中正弦信号是载波信号,方波表示S(t)序列的信号源,正弦信号和方波相乘就得到键控2ASK信号。(2)参数设置建立好模型之后就要设置系统参数,以达到系统的最佳仿真。从正弦信号源开始一次的仿真参数设置如下:其中sin函数是幅度为2频率为1Hz采样周期为0.002的双精度DSP信号。方波信号是给予采样的,其幅度设置为2,周期为3,站1比为2/3(3)系统仿真及各点波形通过上面的参数设置后,就可以进行系统的仿真下面是示波器显示的各点波形图:忧伤阿土可看出信息源和载波信号相乘后就产生了受幅度控制的2ASK信号。2、 解调仿真2ASK的解调分为相干解调法,下面采用想干解调发对2ASK信号进行解调。、(1) 建立simulink模型方框图相干解调也叫同步解调,就是用一条信号恢复载波即同步载波。再用载波和已调信号相乘,经过低通滤波器和抽样判决器恢复出S(t)信号,simulink模型如下:(2) 参数设置建好模型之后,开始设置各点的参数,由于低通滤波器是滤去高频的载波,才能恢复出原始信号,所以为了使一条新号的频谱由明显的搬移,就要使载波和信号源的频率有明显的差别,所以载波的频率设置为100Hz,为了更好恢复出源信号,所以再次直接使用原载波信号作为同步载波信号。下面是低通滤波器的参数设置:(3) 系统仿真及各点时间波形图由上图可以看出由于载波频率的提高使示波器在波形显示上出现了一定的困难,不过要想显示调制部分的理想波形只要调整示波器的显示范围即可。(4)误码率分析由于在解调的过程中没有信道和噪声,所以误码率相对较小,一般是由于码间串扰或是参数设置的问题,由3-5图可看出此系统的误码率为0.3636.3、 学生实验内容用Simulink建立2ASK信号调制与解调系统模型,对系统仿真结果进行分析。通过改变码元速率,观察结果变化并分析为什么?五、实验小结通过这一次的实验,我学会了运用simulink软件对基带信号进行2ASK调制过程进行仿真与建模,学会运用simulink软件对2ASK信号解调过程进行仿真与建模。建立出实验内容要求的模型,记录系统输出波形,并且能分析它们。实训七 2FSK的仿真一、实验目的1、学会运用simulink软件对基带信号进行2FSK调制过程进行仿真与建模;2、学会运用simulink软件对2FSK信号解调过程进行仿真与建模。二试验设备微型计算机一台、MATLAB仿真软件一套三、实验原理在二进制数字调制中,若正弦载波的频率随二进制基带信号在f1和f2两个频率点间变化,则产生二进制移频键控信号(2FSK),二进制移频键控信号的时间波形如图7-1所示,图中波形g可分为波形e和波形f,即二进制移频键控信号可以看出是两个不同载波的二进制振幅键控信号的叠加。若二进制基带信号的1符号对应于载波频率f1,0符号对应于载波频率f2,则二进制移频键控信号的时域表达式为e2FSK(t)=ang(t-nTs)cos(w1t+n)+ang(t-nTb)cos(w2+n)式中O , 发送概率为 Pan = 1 , 发送概率为 1-PO , 发送概率为 1-Pbn = 1 , 发送概率为 P由图7-1可看出,bn是an的反码,即若an=1,则bn=0,若an=0,则bn=1,于是bn=an,n和n分别代表第一个信号码元的初始相位。在二进制移频键控信号中,n和n不携带信息,通常令n和n为零。因此,二进制移频键控信号的时域表达式可化简为e2FSK(t)=ang(t-nTs)cos(w1t+n)+ang(t-nTb)cosw2t二进制移频键控信号的产生,可以采用模拟调频电路来实现,也可以采用数字键控的方法来实现。图7-2是数字键控法实现二进制移频键控信号的原理图,图中两个振荡器的输出载波受输入的二进制基带信号控制,在一个码元Ts期间输出f1或f2两个载波之一。二进制移频键控信号的解调方法很多,有模拟监频法和数字检测法,有非相干解调法也有相干解调法。采用非相干解调和想干解调两种方法的原理图如图7-3所示。其解调原理是将二进制移频键控信号分解为上下两路二进制振幅键控信号,分别进行解调,通过对上下两路的抽样值进行比较最终各判决出输出信号。非相干解调过程的时间波形图如图7-4所示。四、实验内容1、调制仿真模型2FSK信号是由频率分别为f1和f2的两个载波对信号源进行频率上的控制而形成的,其中f1和分f2是由两个频率有明显差别的且都远大于信号源频率的载波信号,2FSK信号产生的simulink仿真模型图如下所示:其中sinwave和sinwavel是两个频率分别为f1好f2的载波,pulse generator模块是信号源,not实现方波的反向,最后经过相乘器和相加器生成2FSK信号,各参数设置如下:载波f1的参数设置:其中幅度为2,f1=1Hz,采样时间为0.002s在此选择载波为单精度信号。f2的参数设置载波是幅度为2,f2=2,采样时间为0.002的单精度信号。本来信号源s(t)序列是用随机的01信号产生,在此为了方便仿真就选择了基于采样的Pulse Generator信号模块其参数设置如下:其中方波是幅度为1,周期为3,占1比为1/3的基于采样的信号。经过以上参数的设置后就可以进行系统的仿真,其各点的时间波形如下:由上图可以看出经过f1和f2两个载波的调制,2FSK信号有明显的频率上的差别。2、 解调仿真解调方框图如下所示:其中From File是一个封装模块,就是2FSK信号的调制模块,两个带通滤波器分别将2FSK信号上下分频f1好f2,后面就和2ASK信号的解调过程相同,各参数设置如下:经过系统仿真后的各点时间波形如下:经过系统仿真可以观察出系统的误码率为0.7273,如下图所示:3、学生实验内容 用Simulink建立2FSK信号调制与解调系统模型,对系统仿真结果进行分析。通过改变码元速率,观察结果变化并分析为什么?五、实验小结通过本次实验的学习与深入,我已经基本学会了2FSK系统的调制与仿真,并且学会了运用simulink软件对于基带信号2FSK的调制仿真的过程进行建立模型,还知道了利用画图来截图。实训八 2PSK的仿真一、实验目的1、学会运用simulink软件对基带信号进行2PSK调制过程进行仿真与建模;2、学会运用simulink软件对2PSK信号解调过程进行仿真与建模;二、实验设备微型计算机一台、MATLAB仿真软件一套三、实验原理在二进制数字调制中,当正弦载波的相位随二进制数字基带信号离散变化时,则产生二进制移相键控(2PSK)信号。通常用已调信号载波的0和180分别表示二进制数字基带信号的1和0.二进制移相键控信号的时域表达式为e2PSK(t)=g(t-nTs)coswct其中,an与2ASK和2FSK时的不同,在2PSK调制中,a n应选择双极性,即 0, 发送概率为Pan= 1, 发送概率为1-P0, 发送概率为1-Pbn=1, 发送概率为P若g(t)是脉宽为Ts,高度为1的矩形脉冲,则有e2PSK(t)=cosEct,发送概率为P,-coswct,发送概率为1-P;由式可看出,当发送二进制符号1时,已调信号e2PSK取0相位,发送二进制符号为0时,e2psk(t)取180相位,若用n表示第n个符号的绝对相位,则有n=0,发送1符号180,发送0符号这种以载波的不同相位直接表示相应二进制数字信号的调制方式,称为二进制绝对移相方式,二进制移相键控信号的典型时间波形如图所示:二进制移相键控信号的调制原理图如图所示,其中图1是采用模拟信号调制的方法产生2PSK信号,图2是采用数字键控的方法产生2PSK信号。2PSK信号的解调通常都是采用相干解调,解调器原理图如图8-3所示。在相干解调过程中需要用到与接收的2PSK信号同

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论