数学建模复习题--西北农林科大学计算机系.doc_第1页
数学建模复习题--西北农林科大学计算机系.doc_第2页
数学建模复习题--西北农林科大学计算机系.doc_第3页
数学建模复习题--西北农林科大学计算机系.doc_第4页
数学建模复习题--西北农林科大学计算机系.doc_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数学模型复习资料10级计算机数学模型复习资料西北农林科大学 计算机专业相信这些都是重点的东西,大家一定要认真复习,争取考好数模,祝大家考试顺利第一部分(简答题)1叙述模型和数学模型的概念,并举例说明.(1)模型是指为了某个特定的目的将原型的某一部分信息简缩、提炼而构造的原型替代物。(2)对某一实际问题应用数学语言和方法,通过抽象、简化、假设等对这一实际问题近似刻划所得的数学结构,称为此实际问题的一个数学模型.2写出数学建模过程流程图;数学建模过程流程图为:实际问题抽象、简化、假设确定变量、参数归结数学模型 数学地、数值地 求解模型估计参数否 检验模型(用实例或有关知识)符合否?是评价、推广并交付使用产生经济、社会效益3建立数学模型的基本步骤有哪些?1模型准备(背景、目的、现象、数据、特征)2模型假设(合理性、简化性.但过份简单、过份详细都不对,或反映不了原问题或无法表达模型,要充分发挥想象力、洞察力、判断力,不断修改或补充假设)3模型构成(建立数学结构)4模型求解(包括推理、证明、数学地或数值地求解)5模型分析(数学意义分析、合理性分析、误差分析、灵敏性分析)6模型检验(接受实际检验、往往在假设上)7模型应用(取决于建模的目的)4写出5个数学模型按照应用领域分类的模型名称.按模型的应用领域分类 数学模型 5写出5个按照建立数学模型的数学方法分类的模型名称.按建模的数学方法分类数学模型 6写出5个数学模型按照建模目的分类的模型名称.按建模目的来分类 数学模型 7. 长方形椅子摆放问题、人口问题(习题8)、习题9.这些以小题形式出现(1)椅子摆放问题认真看书,要知道模型的假设和模型。(6-7页)(2)人口问题也要知道模型是怎么建的,两种模型,指数增长和阻滞增长(9-13页)(3)习题8和习题9的解答过程如下(考小题,这里大家要理解是如何做的)(23页)8. 假定人口的增长服从这样的规律:时刻的人口为,单位时间内人口的增量与成正比(其中为最大容量).试建立模型并求解.作出解的图形并与指数增长模型、阻滞增长模型的结果比较.解:现考察某地区的人口数,记时刻的人口数为(一般是很大的整数),且设为连续可微函数.又设.任给时刻及时间增量,因为单位时间内人口增长量与成正比, 假设其比例系数为常数.则到内人口的增量为: .两边除以,并令,得到 解为 如图实线所示, 指数模型 当充分大时 它与Logistic模型相近. Logistic模型 o t 9为了培养想象力、洞察力和判断力,考察对象时除了从正面分析外,还常常需要从侧面或反面思考.试尽可能迅速回答下面问题:(1) 某甲早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿.次日早8:00沿同一路径下山,下午5:00回到旅店.某乙说,甲必在两天中的同一时刻经过路径中的同一地点.为什么?(2) 37支球队进行冠军争夺赛,每轮比赛中出场的每两支球队中的胜者及轮空者进入下一轮,直至比赛结束.问共需进行多少场比赛,共需进行多少轮比赛.如果是支球队比赛呢?解:(1)方法一:以时间为横坐标,以沿上山路径从山下旅店到山顶的行程为纵坐标, 第一天的行程可用曲线()表示 ,第二天的行程可用曲线()表示,()()是连续曲线必有交点,两天都在时刻经过地点. x d 方法二:设想有两个人, () 一人上山,一人下山,同一天同 时出发,沿同一路径,必定相遇. () t 早8 晚5 方法三:我们以山下旅店为始点记路程,设从山下旅店到山顶的路程函数为(即t时刻走的路程为),同样设从山顶到山下旅店的路函数为,并设山下旅店到山顶的距离为(0).由题意知:,.令,则有,由于,都是时间t的连续函数,因此也是时间t的连续函数,由连续函数的介值定理,使,即.(2)36场比赛,因为除冠军队外,每队都负一场;6轮比赛,因为2队赛1轮,4队赛2轮,32队赛5轮. 队需赛场,若,则需赛轮.8传染病模型、战争模型、房室模型、军备竞赛模型.注:这几个模型大家要能够理解模型是如何建立的要写得出相应的模型,一定要记得住写得出。传染病模型(三个)见课本【136页(5)式,137页(9)式,139页(14)式】战争模型见课本【148页(1)式,149页(3)式150页(8)(9)式】房室模型见课本【154页(3)式】军备竞赛模型见课本【181页(1)式,军备竞赛模型要能够计算它的平衡点所以181页(2)式-182页(3)(4)(5)式都要明白。9层次分析模型(写出层次结构图、层次分析步骤等).这里给出两个例子:层次分析模型大家要能够根据题目的已知条件画出层次结构,【课本231页】几个基本步骤要知道,【课本235页】那些图作为参考大家要理解是怎么构造的。(1)于省时、收入、岸间商业、当地商业、建筑就业等五项因素,拟用层次分析法在建桥梁、修隧道、设渡轮这三个方案中选一个,画出目标为“越海方案的最优经济效益”的层次结构图.越海方案的最优经济效益解:目标层 建筑就 业岸间商 业当地商业收入省时 准则层修隧道建桥梁设渡轮 方案层 (2)述层次分析法的基本步骤. 问对于一个即将毕业的大学生选择工作岗位的决策问题要分成哪3个层次?具体内容分别是什么?答:层次分析法的基本步骤为:(1)建立层次结构模型;(2)构造成对比较阵;(3)计算权向量并做一致性检验;(4)计算组合权向量并做组合一致性检验 对于一个即将毕业的大学生选择工作岗位的决策问题,用层次分析法一般可分解为目标层、准则层和方案层这3个层次. 目标层是选择工作岗位,方案层是工作岗位1、工作岗位2、工作岗位3等,准则层一般为贡献、收入、发展、声誉、关系、位置等.10循环比赛(由得分向量写出竞赛图或邻接矩阵、双向连通图、排名次等).循环比赛虽然考小题,但是这里把练习答案附上,以便大家能更好更深刻理解,怎么样根据题画图写矩阵和排名次。7. 右下图是5位网球选手循环赛的结果,作为竞赛图,它是双向连通的吗?找出几条完全路径,用适当方法排出5位选手的名次.21345解:这个5阶竞赛图是一个5阶有向Hamilton图.其一个有向Hamilton圈为3.所以此竞赛图是双向连通的. 等都是完全路径. 此竞赛图的邻接矩阵为 令,各级得分向量为, , , 由此得名次为5,1(4),2,3 (选手1和4名次相同).第二部分(大题) 老师给出的重点大题,大家一定要能够做得出来,相信大题肯定在这部分中出做大题的时候,大家一定要仔细,如果不能完全把题做出来,你还记得的步骤或者是公式一定要写上去,不要留空。差分方程看书【205页,207页】2知某商品在时段的数量和价格分别为和,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为和.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.解:已知商品的需求函数和供应函数分别为和.设曲线和相交于点,在点附近可以用直线来近似表示曲线和: -(1) - -(2)由(2)得 -(3) (1)代入(3),可得 , -(4)上述(4)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程.为了寻求点稳定平衡条件,我们考虑(4)对应的齐次差分方程的特征方程: 容易算出其特征根为 -(5)当8时,显然有 -(6)从而 2,在单位圆外下面设,由(5)式可以算出 要使特征根均在单位圆内,即 ,必须 故点稳定平衡条件为 由于老师说了,差分方程模型是100%要考的,所以加多个题目,至于出什么大家自己去衡量。(2.1)在时段的数量和价格分别为和,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为和.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.解:已知商品的需求函数和供应函数分别为和.设曲线和相交于点,在点附近可以用直线来近似表示曲线和: -(1) -(2)从上述两式中消去可得 , -(3)上述(3)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程.为了寻求点稳定平衡条件,我们考虑(3)对应的齐次差分方程的特征方程: 容易算出其特征根为 -(4)当8时,显然有 -(5)从而 2,在单位圆外下面设,由(5)式可以算出 要使特征根均在单位圆内,即 ,必须 故点稳定平衡条件为 捕鱼模型在课本【77页】课后练习【201页】1,2题也要会做3设某渔场鱼量(时刻渔场中鱼的数量)的自然增长规律为:其中为固有增长率,为环境容许的最大鱼量. 而单位时间捕捞量为常数.(1)求渔场鱼量的平衡点,并讨论其稳定性;(2)试确定捕捞强度,使渔场单位时间内具有最大持续产量,并求此时渔场鱼量水平.解:(1).变化规律的数学模型为 记,令 ,即 -(1) , (1)的解为: 当时,(1)无实根,此时无平衡点; 当时,(1)有两个相等的实根,平衡点为. , 不能断定其稳定性.但 及 均有 ,即不稳定; 当时,得到两个平衡点: , 易知 , , 平衡点不稳定 ,平衡点稳定. (2)最大持续产量的数学模型为: 即 , 易得 此时 ,但这个平衡点不稳定.要获得最大持续产量,应使渔场鱼量,且尽量接近,但不能等于.4.与Logistic模型不同的另一种描述种群增长规律的是Gompertz模型:其中和的意义与Logistic模型相同.设渔场鱼量的自然增长服从这个模型,又单位捕捞量为.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量及获得最大产量的捕捞强度和渔场鱼量水平.解:变化规律的数学模型为 记 令,得 ,平衡点为 . 又, 平衡点是稳定的,而平衡点不稳定. 0 最大持续产量的数学模型为:由前面的结果可得 ,令得最大产量的捕捞强度从而得到最大持续产量,此时渔场鱼量水平量纲分析模型也是100%要考的,大家一定要会做,还要看书【46页】5.深水中的波速与波长、水深、水的密度和重力加速度有关,试用量纲分析方法给出波速的表达式.解:设,, 的关系为=0.其量纲表达式为=LM0T-1,=LM0T0,=LM0T0,=L-3MT0, =LM0T-2,其中L,M,T是基本量纲. -4分量纲矩阵为 A= 齐次线性方程组Ay=0 ,即 的基本解为= = 由量纲定理 得 , , ,其中是未定函数 . 线性规划问题也是出题重点,一点要会做,相信会出大题的。注意看书【82页】6某工厂生产甲、乙两种产品,生产每件产品需要原材料、能源消耗、劳动力及所获利润如下表所示:品种原材料能源消耗(百元)劳动力(人)利润(千元)甲2144乙3625现有库存原材料1400千克;能源消耗总额不超过2400百元;全厂劳动力满员为2000人.试安排生产任务(生产甲、乙产品各多少件),使利润最大,并求出最大利润.解:设安排生产甲产品件,乙产品件,相应的利润为S.则此问题的数学模型为 模型的求解: 用图解法.可行域为:由直线组成的凸五边形区域. 直线在此凸五边形区域内平行移动. 易知:当过的交点时,S取最大值. 由 解得:(千元). 故安排生产甲产品400件、乙产品200件,可使利润最大,其最大利润为2600千元.7. 某厂拟用集装箱托运甲乙两种货物,每箱的体积、重量以及可获利润如下表:货物体积(立方米/箱)重量(百斤/箱)利润(百元/箱)甲5220乙4510 已知这两种货物托运所受限制是体积不超过24立方米,重量不超过13百斤.试问这两种货物

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论