数学归纳法经典练习及解答过程.doc_第1页
数学归纳法经典练习及解答过程.doc_第2页
数学归纳法经典练习及解答过程.doc_第3页
数学归纳法经典练习及解答过程.doc_第4页
数学归纳法经典练习及解答过程.doc_第5页
免费预览已结束,剩余3页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第七节数学归纳法知识点数学归纳法证明一个与正整数n有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n取第一个值n0(n0N*)时命题成立(2)(归纳递推)假设nk(kn0,kN*)时命题成立,证明当nk1时命题也成立只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立易误提醒运用数学归纳法应注意:(1)第一步验证nn0时,n0不一定为1,要根据题目要求选择合适的起始值(2)由nk时命题成立,证明nk1时命题成立的过程中,一定要用到归纳假设,否则就不是数学归纳法自测练习1已知f(n),则()Af(n)中共有n项,当n2时,f(2)Bf(n)中共有n1项,当n2时,f(2)Cf(n)中共有n2n项,当n2时,f(2)Df(n)中共有n2n1项,当n2时,f(2)解析:从n到n2共有n2n1个数,所以f(n)中共有n2n1项,且f(2),故选D.答案:D2(2016黄山质检)已知n为正偶数,用数学归纳法证明12时,若已假设nk(k2为偶数)时命题为真,则还需要用归纳假设再证n()时等式成立()Ak1Bk2C2k2 D2(k2)解析:根据数学归纳法的步骤可知,则nk(k2为偶数)下一个偶数为k2,故选B.答案:B考点一用数学归纳法证明等式|求证:(n1)(n2)(nn)2n135(2n1)(nN*)证明(1)当n1时,等式左边2,右边2112,等式成立(2)假设当nk(kN*)时,等式成立,即(k1)(k2)(kk)2k135(2k1)当nk1时,左边(k2)(k3)2k(2k1)(2k2)2(k1)(k2)(k3)(kk)(2k1)22k135(2k1)(2k1)2k1135(2k1)(2k1)这就是说当nk1时,等式成立根据(1),(2)知,对nN*,原等式成立 1用数学归纳法证明下面的等式:12223242(1)n1n2(1)n1.证明:(1)当n1时,左边121,右边(1)01,原等式成立(2)假设nk(kN*,k1)时,等式成立,即有12223242(1)k1k2(1)k1.那么,当nk1时,则有12223242(1)k1k2(1)k(k1)2(1)k1(1)k(k1)2(1)kk2(k1)(1)k.nk1时,等式也成立,由(1)(2)知对任意nN*,有12223242(1)n1n2(1)n1.考点二用数学归纳法证明不等式|设数列an各项均为正数,且满足an1ana.求证:对一切n2,都有an.证明数列an各项均为正数,且满足an1ana,a2a1a0,解得0a11.当n2时,a3a2a2,不等式成立,假设当nk(k2)时,不等式成立,即ak,则当nk1时,ak1aka22.解:(1)证明:an1,化简得2,即2,故数列是以1为首项,2为公差的等差数列(2)由(1)知2n1,Snn2.证明:法一:1.法二:(数学归纳法)当n1时,1,不等式成立假设当nk时,不等式成立,即.则当nk1时,又110,原不等式成立考点三归纳猜想证明问题|将正整数作如下分组:(1),(2,3),(4,5,6),(7,8,9,10),(11,12,13,14,15),(16,17,18,19,20,21),分别计算各组包含的正整数的和如下,试猜测S1S3S5S2n1的结果,并用数学归纳法证明S11,S2235,S345615,S47891034,S5111213141565,S6161718192021111,解由题意知,当n1时,S1114;当n2时,S1S31624;当n3时,S1S3S58134;当n4时,S1S3S5S725644.猜想:S1S3S5S2n1n4.下面用数学归纳法证明:(1)当n1时,S1114,等式成立(2)假设当nk(kN*)时等式成立,即S1S3S5S2k1k4,那么,当nk1时,S1S3S5S2k1S2k1k4(2k2k1)(2k2k2)(2k2k2k1)k4(2k1)(2k22k1)k44k36k24k1(k1)4,这就是说,当nk1时,等式也成立根据(1)和(2),可知对于任意的nN*,S1S3S5S2n1n4都成立3设a0,f(x),令a11,an1f(an),nN*.(1)写出a2,a3,a4的值,并猜想数列an的通项公式;(2)用数学归纳法证明你的结论解:(1)a11,a2f(a1)f(1);a3f(a2);a4f(a3).猜想an(nN*)(2)证明:易知n1时,猜想正确假设nk时猜想正确,即ak,则ak1f(ak).这说明,nk1时猜想正确由知,对于任意的nN*,都有an成立.14.数学归纳法在证明不等式中的易误点【典例】设函数f(x)xsin x,数列an满足an1f(an)(1)若a12,试比较a2与a3的大小;(2)若0a11,求证:对任意nN*,0an0,又a3f(a2)a2sin a2,所以a3a2sin a2a3.(2)证明:用数学归纳法证明当0a11时,对任意nN*,0an1恒成立当n1时,0a11,结论成立;假设当nk(k1,kN*)时,0ak0,则当nk1时,ak1aksin ak0,所以ak1ak0,所以f(x)是(0,1)上的单调递增函数,所以ak1f(ak)f(0)0,即0ak11,故当nk1时,结论成立综上可得,当0a11时,对任意nN*,0an1恒成立易误点评(1)不会作差比较a2与a3大小,同时忽视了sin 2的值大小(2)证明nk1成立时用不归纳做证nk成立条件导致失误防范措施(1)用数学归纳证明不等式的关键是由nk时命题成立,证明nk1时命题成立(2)在归纳假设使用后,注意最后结论证明方法的选择跟踪练习若函数f(x)x22x3,定义数列xn如下:x12,xn1是过点P(4,5),Qn(xn,f(xn)的直线PQn与x轴的交点的横坐标,试运用数学归纳法证明:2xnxn13.证明:(1)当n1时,x12,f(x1)3,Q1(2,3)直线PQ1的方程为y4x11,令y0,得x2,因此,2x1x23,即n1时结论成立(2)假设当nk时,结论成立,即2xkxk13.直线PQk1的方程为y5(x4)又f(xk1)x2xk13,代入上式,令y0,得xk24,由归纳假设,2xk13,xk240,即xk1xk2.所以2xk1xk23,即当nk1时,结论成立由(1),(2)知对任;意的正整数n,2xnxn13.A组考点能力演练1用数学归纳法证明:12(nN,n2)证明:(1)当n2时,12,命题成立(2)假设nk时命题成立,即12.当nk1时,121,f(2)1;下面用数学归纳法证明:当n3时,f(n)1.由(1)知当n3时,f(n)1;假设nk(k3)时,f(k)1,即f(k)1,那么f(k1)1111,所以当nk1时,f(n)1也成立由和知,当n3时,f(n)1;当n3时,f(n)2,an(n2,nN*)(1)求证:对任意nN*,an2;(2)判断数列an的单调性,并说明你的理由;(3)设Sn为数列an的前n项和,求证:当a3时,Sn2(nN*);当n1时,a1a2,结论成立;假设nk(k1)时结论成立,即ak2,则nk1时,ak12,所以nk1时,结论成立故由及数学归纳法原理,知对一切的nN*,都有an2成立

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论