




免费预览已结束,剩余4页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初等数论考试试卷一、 单项选择题:(1分/题20题=20分)1设为实数,为的整数部分,则(A);2下列命题中不正确的是(B)整数的公因数中最大的称为最大公因数;整数的公倍数中最小的称为最小公倍数 【有最小的吗?】整数与它的绝对值有相同的倍数整数与它的绝对值有相同的约数3设二元一次不定方程(其中是整数,且不全为零)有一整数解,则此方程的一切解可表为(C)4下列各组数中不构成勾股数的是(D)5,12,13; 7,24,25;3,4,5; 8,16,175下列推导中不正确的是(D)6模10的一个简化剩余系是(D) 7的充分必要条件是(A) 8设,同余式的所有解为(C)或 或或无解9、设f(x)=其中为f(x)的一个解,则:( ? )ABC D10则同余式:( )A有时大于p但不大于n; B不超过pC等于p D等于n11若2为模p的平方剩余,则p只能为下列质数中的 :( D )A3 B11 C13 D23 12若雅可比符号,则 ( C )AB;C;D13( A ) A 4 B 3 C 2 D 114 模12的所有可能的指数为:( A ) A1,2,4 B1,2,4,6,12 C1,2,3,4,6,12 D无法确定15 若模m的原根存在,下列数中,m不可能等于:( D ) A 2 B 3 C 4 D 12 16对于模5,下列式子成立的是 ( B )A B C D 17下列函数中不是可乘函数的是: ( C )A茂陛鸟斯(mobius)函数w(a) ;B欧拉函数;C不超过x的质数的个数;D除数函数;18若对模的指数是,0,0,则对模m的指数是( B )A B C D无法确定19,均为可乘函数,则( A )A为可乘函数; B为可乘函数C为可乘函数; D为可乘函数20设为茂陛乌斯函数,则有( B )不成立A B C D二填空题:(每小题1分,共10分)21 3在45中的最高次n _21_;22 多元一次不定方程:,其中 , ,N均为整数,有整数解的充分必要条件是_( , ,)N_;23有理数,能表成纯循环小数的充分必要条件是_(10,b)=1_;24 设为一次同余式,的一个解,则它的所有解为_;25 威尔生(wilson)定理:_!+1为素数_;26 勒让德符号=_1_;27 若,则是模的平方剩余的充分必要条件是(欧拉判别条件);28 在模的简化剩余系中,原根的个数是_;29 设,为模的一个原根,则模的一个原根为_g 与g+中的奇数_;30 _16_。三简答题:(5分题4题20分)31命题“任意奇数的平方减1是8的倍数”对吗?说明理由。32“若,通过模的简化剩余系,则也通过模的简化剩余系”这命题是否正确?正确请证明,不正确请举反例。33求模17的简化剩余系中平方剩余与平方非剩余。34设为的标准分解式,记为的正因数的和,为的正因数的个数,则? ? 为什么?四计算题。(7分题4题28分)35 求不定方程6x+93y=75的一切整数解。36 解同余方程组37解同余式11(mod125)38求模13的所有原根。五、证明题:(7分/题2题=14分)39、试证:,(x,y)=1,y是偶数的整数解可写成: 这里,并且一为奇数,一为偶数。40、设a为正整数,试证: 其中表示展布在a的一切正因数上的和式。六、应用题:(8分)41、求30!中末尾0的个数。参考答案一单项选择:ABCDD;DACCB;DCAAD;BCBAB。 二填空题:2121;22;23;24;25!+1为素数;261;27;28;29与中的单数;3016三简答题:31答:命题正确。 而必为2的倍数。86页32 正确证明见教材。33在摸的简化剩余系中与同余的数是数的平方剩余,故1,2,4,8,9,13,15,16为摸17的平方剩余,而3,5,6,7,10,11,12,14为摸17的平方非剩余。34 证明:若为可乘函数,则 分别令,它们为可乘函数,即得出。四计算题35解:因为,故原不定方程有解。 又原方程即 ,而易见方程有解 。所以原方程的一个解是所以,原方程的一切整数解是: t是整数36解:因为模5,6,7两两互质,由孙子定理得所给同余方程组关于模567210有唯一解,分别解同余方程:,得, ,因此所给同余方程组的解是:即:37解:从同余方程, , , 是 得即是所给方程的一个解,于是所解为: 解毕。38解: 为其质因数 ,故g为模13的原根的主要条件是: , 用 g=1,2,12逐一验证,得:2,6,7,11为模13的原根, 因为,故模13原根只有4个,即为所求。五、证明题:39证明:易验证所给的解为原方程的解,因y为偶数,原方程可化为: 但 而,所以(,)=1 由书中引理,我们可假设 =, =b 显然b, (,b)=1, 于是 X=b, z=+ ,y=2 因子为奇数,所以,b一定是一为奇,一为偶,证毕40证明:假定 ,-, 为的所有正约数,那末 ,-,也是的所有正约数,于是 = 再因为在的完全剩余系中任一数的最大公约数 必定是 ,-, 中某一个数,而
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 离婚协议精简范本制作与财产分割协议书
- 离婚家庭子女户口迁移与抚养教育全面协议书
- 离婚协议中双方子女未来职业规划及支持协议样板
- 智能家居监控设备定期检查与维护服务合同
- 离婚协议书制作与个人财产分割及子女抚养合同
- Unit 1 Past and Present(Grammar) 说课稿 2024-2025学年牛津译林版英语八年级下册
- §3 等比数列教学设计-2025-2026学年高中数学北师大版2011必修5-北师大版2006
- Unit 11 Reduce,Reuse,Recycle说课稿-2025-2026学年初中英语教科版五四学制八年级上册-教科版五四学制2012
- 一年级道德与法治下册 第四单元 我们在一起 16大家一起来说课稿1 新人教版
- 2025企业融资家具购销合同
- 作文提纲课件
- 智慧养殖物联网解决方案
- 个人借款协议书范文:免修版模板范本
- 孙燕姿所有歌曲歌词大全(11张专辑)
- 竹简与毛笔背景的国学主题PPT
- 透明土实验技术的研究进展
- 《欧姆定律》 单元作业设计
- 新高考人教版高中化学必修一全套课件
- 带秋字的古诗飞花令
- 体育原理完整版
- 医院医院质量与安全管理委员会章程
评论
0/150
提交评论