




已阅读5页,还剩38页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
GaloisTheory Dr P M H Wilson Mich lmas L A T E XedbyAnneHarrison commentsto soc archim notes lists cam ac uk Chapter Introduction Thesenotesarebasedonthecourse GaloisTheory givenbyDr P M H Wil soninCambridgeintheMich lmasTerm Thesetypesetnotesare totallyunconnectedwithDr Wilson Othersetsofnotesareavailablefordi erentcourses Thelistofavailable coursesvariesovertimeandmaybeobtainedfrom http www cam ac uk CambUniv Societies archim notes htm oryoucanemailsoc archim notes lists cam ac uktogetacopyofthe setsyourequire Copyright c TheArchimedeans CambridgeUniversity Allrightsreserved Redistributionanduseofthesenotesinelectronicorprintedform with orwithoutmodi cation arepermittedprovidedthatthefollowingconditions aremet Redistributionsoftheelectronic lesmustretaintheabovecopyright notice thislistofconditionsandthefollowingdisclaimer Redistributionsinprintedformmustreproducetheabovecopyright notice thislistofconditionsandthefollowingdisclaimer Allmaterialsderivedfromthesenotesmustdisplaythefollowingac knowledgement ThisproductincludesnotesdevelopedbyThe Archimedeans CambridgeUniversityandtheircontrib utors NeitherthenameofTheArchimedeansnorthenamesoftheircontrib utorsmaybeusedtoendorseorpromoteproductsderivedfromthese notes Neitherthesenotesnoranyderivedproductsmaybesoldonafor pro t basis althoughafeemayberequiredforthephysicalactofcopying Youmustcauseanyeditedversionstocarryprominentnoticesstating thatyoueditedthemandthedateofanychange THESENOTESAREPROVIDEDBYTHEARCHIMEDEANSAND CONTRIBUTORS ASIS ANDANYEXPRESSORIMPLIEDWAR RANTIES INCLUDING BUTNOTLIMITEDTO THEIMPLIEDWAR RANTIESOFMERCHANTABILITYANDFITNESSFORAPARTICU LARPURPOSEAREDISCLAIMED INNOEVENTSHALLTHEARCHIMEDEANS ORCONTRIBUTORSBELIABLEFORANYDIRECT INDIRECT IN CIDENTAL SPECIAL EXEMPLARY ORCONSEQUENTIALDAMAGES HOWEVERCAUSEDANDONANYTHEORYOFLIABILITY WHETHER INCONTRACT STRICTLIABILITY ORTORT INCLUDINGNEGLI GENCEOROTHERWISE ARISINGINANYWAYOUTOFTHEUSE OFTHESENOTES EVENIFADVISEDOFTHEPOSSIBILITYOF SUCHDAMAGE Chapter RevisionfromGRF FieldExtensions SupposeK L elds recallthatanynon zeroringhomomorphism HM K Lisnecessarilyinjectiveandthen a b a b forb ie isa homomorphismof elds De nitionA eldextensionofKconsistsofa eldLandanon zero eld HM K L RemarkSucha isalsocalledanembeddingofKintoL OfcourseKcan beasub eldofLwith theinclusion InfactweoftenjustidentifyKwith itsimage K L If K La eldextension Lhasthestructure ofaK vectorspace it sanabeliangroupwithKactingviaa a multiplicationinL a K L Thedimensionofthisvectorspaceis calledthedegree L K oftheextension SayLis niteoverKifthevector spaceis nitedimensional ExampleK fp q p p q Qgasub eldofCisa niteextensionof Qofdegree p q p p q p p q LemmaIffK i g i I isanycollectionofsub eldsofa eldLthen T i I K i alsoasub eld ProofEasyexercisefromtheaxioms CHAPTER REVISIONFROMGRF De nitionGivenasub eldk LandS Lanysubset thesub eld generatedbykandS k S fsubfieldsK LjK kandK Sg LemmaThisisasub eldanditisthesmallestsub eldcontainingkand S IfS fx x n g writek x x n fork S Wesaythata eld extension k Lis nitelygenerated f g ifforsomen x x n L stL k x x n Ifmoreovern theextensioniscalledsimple NotationFromnowonweusuallydenotea eldextensionbyk K K kor K j k Givena eldextension k KandasubsetS Kdenotethe eld extensionk k Sbyk S k De nitionGivena eldextensionK k anelementx Kisalgebraic overkif non zeropolynomialf Ks t f x inK otherwisexis calledtranscendental Ifxalgebraicoverk themonicpolynomial f X n a n X n a X a ofsmallestdegreens t f x is calledtheminimalpolynomial Clearlysuchanfisirreducible Remainder Theorem uniqueness De nitionK kisalgebraicifeveryxinKisalgebraicoverk Itiscalled puretranscendentalifnox Kisalgebraicoverkapartfromthosein image of k Theorem Givena eldextension K k x K xalgebraicoverk k x k Whenxisalgebraic k x k isthedegreeofitsminimalpolynomial Proof If k x k n then x x n arelinearlydependentover k polynomialfasclaimedwithf x inK Ifxalgebraicoverkwithminimalpolynomialf thenf x x n a n x n a x a inK Supposeg k x s t g x sincefisirreduciblewehaveh c f f g Euclid sAlgorithm k x s t f g ink x x g x in Kandsog x x x subspaceofKgeneratedbypowersofx FIELDEXTENSIONS Nowk x consistsofallelementsoftheform h x g x forh g k x g x suchelementsformasub eldanditisthesmallestonegeneratedbykand x andsok x spannedasak vectorspaceby x x andhencefrom by x x n Minimalityofn spanningset x x n abasisandhence k x k n Given eldkanirreduciblepolynomialf k x recallthatthequotient ringk x f isa eld Euclid salgorithmyieldsinversesasabove Thereforewehaveasimplealgebraicextensionk k x k x f xde notesimageofX However givenanysimplealgebraicextensionk k x weletfbeminimal polynomialofxoverk Wethenhavea commutation diagram k i k X XinducinganIMof elds evaluation k X f k x k x x Thus uptoIMs anysimplealgebraicextensionofkisoftheformk k X f forf k X irreduciblesoclassifyingsimplealgebraicextensions ofk uptoIM isequivalenttoclassifyingirreduciblemonicpolynomialsin k X Testsforirreducibility seeGRF SupposeRisaUFDandkits eldoffractionseg R Z k Q Gauss sLemmaApolynomialf R X irreducible itisirreduciblein k X EisenstiensIrreducibilitycriterionWithRandkasabove Suppose f a n X n a X a R X andirreducibleallp Rs t pj a n pja i fori n p ja thenfisirreducibleinR X andhencebyGauss s Lemmaink X Ifk K L wehaveatowerof eldextensionsandwe write L j K j k CHAPTER REVISIONFROMGRF Proposition TowerLaw Givensuchatowerof eldextensions L K L K K k usualconventionswith ProofObservethatif L k then K k sinceKasub eldof L and L K sinceanybasisforLoverkisaspanningsetforL K Sow l o g K k m L K n RTP L k mn Letu u m beabasisforLoverK Andv v m beabasisforKoverk ClaimThemnelementsu i v i formabasisforLasavectorspaceoverk easycheckthattheyspanLoverkandarelinearlyindependentoverk Corollory IfKisaf g eldextensionofk sayK k a a m andeacha i algebraicoverk thenK kisa niteextension ProofEacha i algebraicoverk a a i k a a i k a a i i Inductionand K k SplittingFields RecallthatifK kisa eldextensionandf k X wesaythatfsplitsover Kif theimageof finK X splitsintolinearfactors f c X X n c k i kKiscalledasplitting eld orsplittingextension forf ifffailstosplitoveranypropersub eldofK Clearlyequivalenttosaying K k n SplittingFieldsalwaysExist Sinceifgisanyirreduciblefactoroffink x thenk X g k x isan extensionofkforwhichg x x imageofX RemainderTheorem g andhencef splitsofalinearfactor Induction splitting eldKforfwith K k n n degfby Splitting eldsareuniqueuptoisomorphismfollowsfrom SPLITTINGFIELDS Proposition Suppose k k isanisomorphismof eldswith f k X correspondingtog f k X Thenanys f Kforfoverkis isomorphic over toanys f K forgoverk ie commutativediagram K K k k Proof RemarkThuswehavetheexistanceanduniquenessofsplitting eldsfor any nitesetofpolynomials justtakethes f oftheproductofthem with appropriateuseofZorn slemma thisextendstoanysetofpolynomialscf ch whereweprovetheexistanceanduniquenessofalgebraicclosures CHAPTER REVISIONFROMGRF Chapter Separability De nitionAnirreduciblepolynomialf k X iscalledseparableoverk ifithasdistinctzerosinasplitting eldK ief c X X n in K X withc k i distinct Byuniquesness uptoIM ofsplitting elds thiisindependentofanychoices Anarbitrarypolynomialf k X isseparableoverkifallitsirreducible factorsare Iffisnotseparableitiscalledinseparable Todeterminewhetheranirreduciblepolynomialfhasdistinctrootsinas f weintroduceformaldi erentiationofpolynomials D k X k X alinearmapasvectorspacesoverk De nedby D X n nX n n D c c k ClaimD fg fD g gD f ProofUsinglinearity wecanreducethistothecasewherefandgare monomialsinwhichcaseitisatrivialcheck FromnowondenoteD f byf Lemma Apolynomial f k X hasarepeatedrootinasplitting eldi fandf haveacommonfactorofdegree CHAPTER SEPARABILITY Proof Supposefhasarepeatedzero inas f Kief X g inK X Thenf X g X g f f havecommonfactor X inK X f f havecommonfactorink X namely theminimalpolynomialof Supposefhasnorepeatedrootsinas f K Weshowthatf f havenocommonfactorinK X andsoalsoink X Su cienttoprove X jfinK X j f Writingf X g with X j gweobtainf X g gandso X j f Ifnowfisirreducible saysthatfhasrepeatedrootsinas f f Butiff a n X n a X a thenf na n X n a Thereforef ia i inK i Soifdegf n f chark p andpjiwhenevera i fis ofform f b r X pr b r X p r b X p b k X p Soifchark allpolynomialsareseparable Ifchark p anirreduciblepolynomialfinseparable f k X p De nitionGivena eldextensionK kandanelement K wesay that isseparableoverkifitsminimalpolynomialf k X isseparable Theextensioniscalledseparableif separable K Otherwiseitis calledinseparable ExampleLetK F p t eldofrationalfunctionsover nite eldF p with pelements pprime Letk F p t p The eldextensionK kisinseparable theminimalpolyno mialoftoverkisX p t p k X InK X thissplitsas x t p andsois inseparable Lemma Ifwehaveatowerof nite eldextensionsk K Lwith L k separablethenbothL KandK kareseparable ProofGiven L theminimalpolynomialof overKdividesthe minimalpolynomialof overkandsoagainhasdistinctzerosinas f K kseperableobviousfromthede nition Conversetrue butmoredi cultandneedsalittlepreparation Proposition Letk kbea niteextension withf k X themin imalpolynomialfor Givena eldextension k K thenumberof embeddings k Kextending ispreciselythenumberofdistinct rootsof f inK Inparticular atmostn k k suchembeddings withequalityi f splitscompletelyinKandfisseparable ProofThisisessentiallyclear anembeddingk Kextending must send toarootof f andisdeterminedbythisinformation ieif isa rootof f inK thentheringHM k X K g g factorstogivean embedding k k X f Kextending andsending to therefore atmostn degf k k suchembeddings andwehaveequality Leftrightarrow f hasndistinctrootsinK f splitscompletelyin Kandfseparable Theorem SupposeK k a a r isa niteextensionofkandL k any eldextensionforwhichalltheminimalpolynomialsofthea i split ThenumberofembeddingsK Lextendingk Lisatmost K k Ifeacha i isseparableoverK k a a i thenwehaveequality IfthenumberofembeddingsK Lextendingk Lis K k then K kseparable Hence ifeacha i separableoverK k a a i thenK ksep arable by thishappensforinstancewheneacha i separableover k Corollory Ifwehaveatowerk K Lof niteextensionswithL K andK kseparable thensotooisL k Proof Proofof CHAPTER SEPARABILITY Lemma LetG K bea nitesubgroupofthemultiplicativegroup K Knf g Ka eld ThenGiscyclic ProofSeeGRF Theorem PrimativeElementTheorem IfK k a niteextensionodkwith separableoverk Ks t K k Any niteseparableextensionK kissimple Proof TraceandNorm Letk kbea nite eldextension K Multiplicationby de nesalinear map K Kofvectorspacesocerk Thetraceandnormof Tr K k Nm K k arede nedtobethetrace anddeterminantof i e ofanymatrixrepresenting w r t somebasisof Koverk Proposition Supposer K k andf X n a X a minimalpolynomialof overk Ifb i n i a i thenTr K k rb n Nm K k b r Proof CHAPTER SEPARABILITY Chapter AlgebraicClosure De nitionA eldKisalgebraicallyclosedifanyf k X splitsinto linearfactorsoverk Thisisequivalenttotherebeingnonon trivialalgebraic extensionsofK ieanyalgebraicextensionK LisanIM Anextension K kiscalledanalgebraicclosureofkifK kalgebraicandKalgebraically closed Lemma SupposeK kisa eldextension ThesetofelementsofK whicharealgebraicoverkformasub eldLofK IfKalgebraicallyclosed theextensionL kisanalgebraicclosureofk Proof ExampleAlgebraicnumbersinCformasub eld thealgebraicclosureof Q C ExistenceofAlgebraicClosure Asimplemindedapproachtothisleadstosettheoreticproblems theap proachweadoptisperhapsnotthemostnaturalone butavoidsthesprob lemsinacleanway Theorem Analgebraicclosureexistsforany eldk CHAPTER ALGEBRAICCLOSURE Proof Claim Claim UniquenessofAlgebraicClosure Proposition Supposethati k KwithKalgebraicallyclosed For anyalgebraicextensionk L embeddingj L Kextendingi ie L k j i K Proof Corollory Ifi k K i k K aretwoalgebraicclosuresofk then anIM K K s t i i CHAPTER ALGEBRAICCLOSURE Proof RemarkForgeneral eldk theconstructionandproofofuniquenessof algebraicclosure khasinvolvedZorn sLemma andsopreferableingeneral toavoiduseof k NothoweverthatwecanconstructCbybarehands withoutuseofthe axiomofchoice sothisobjectionislessvalidfore g k R Q algebraic number eld itisoftenusefultochoseaparticularzeroofapolynomialin Ce g arealroot Chapter NormalExtensionsandGalois Extensions De nitionAnextensionK kisnormalifeveryirreduciblepolynomial f k X havingarootinKsplitscompletelyoverk oneout allout ExampleQ QisnotnormalsinceX doesn tsplitoveranyreal eld Theorem AnextensionK kisnormaland nite K kisasplitting eldforsomepolynomialoverk Proof Claim CHAPTER NORMALEXTENSIONSANDGALOISEXTENSIONS ProofofClaim NormalClosures Givena niteextensionK k wewriteK k r withf i minimal polynomialof i overkandletL Kbeasplitting eldforF f f r consideredasapolynomialinK X Then L knormal itiscalled thenormalclosureforK k AnyextensionM KforwhichM Knormal mustsplitFandsoforsome sub eldL M L Kisalsoasplitting eldforF andisomorphicoverK toL Kby ThusthenormalclosureofK kmaybecharacterisedasa minimalextensionforwhichL kisnormal anditisuniquuptoIM Note Zorn sLemmanotrequired De nitionGiven eldextensionsK kandL k ak embeddingofKinL isgivenbyacommutativediagram K L k Inthecasewhere K k L kandtheextensionis nite thenK Kisalsosurjective an injectivelinearmapof nitedimensionalvectorspacetoitselfisanIM and hencea eldIMoverk Thesearecalledk automorphisms k AM Much ofGaloisTheoryisconcernedwiththegroupAut K k ofallk AMsof extensionK k Theorem IfK kisa niteextension let K Lbeanormal closureofK kwithK K L Numberoffk embeddingsK Lg K k withequalityi K k separable K knormal anyk embeddingK LhasimageK anyk embeddingK isoftheform forsomek AM ofK Proof Corollory IfK kisa niteextension thenjAut K k j K k with equalityi K kisnormalandseparable Proof Fromnowwewilldealwith eldextensionsk K sub eld wedon t losegeneralitybydoingthisnow asforanyextesnionk K wecanalways identifykwithitsimage CHAPTER NORMALEXTENSIONSANDGALOISEXTENSIONS De nitionIfKa eldandGis nitegroupofAMsofK wedenotethe xedsub eldK G Kwhere K G fx Ks tg x x g Gg Easycheckthisisasub eld Wesaythata niteextensionk KisGaloisifk k G forsome niteGof AMs ClearlyG Aut K k andinfactG Aut K k RemarkBeforewehavetakenthe bottomup approach takingexten sionsofbase elds Heretheapproachis topdown Wewillseethatthese twowaysofdevelopingGaloisTheoryareequivalent Proposition LetGbea nitegroupsofAMsactingona eldK with k K G K Everyelement Khas k k jGj K kseparable K k nitewith K k jGj Proof Theorem Letk Kbea niteextensionof elds Thenthefollowing areequivalent K kgalois kisthe xed eldofAut K k jAut K k j K k K knormalandseparable Moreover ifk K G forsome nitegroupGofAMs wehaveG Aut K k Proof NotationIfk Kgalois weoftenwriteGal K k forAut K k the galoisgroupoftheextension FundamentalTheoremofGaloistheory LetK kbea niteextensionof elds ThegroupG Aut K k has jGj K k by LetF K G k jGj K F IfHasubgroupofG thenthe xed eldL K H isanintermeadiate eldF L Kand Aut K L H Foranyintermeadiate eldF L K letHbethesubgroup Aut K L ofG Aut K k ClaimK LisaGaloisextensionandL K H Proof CHAPTER NORMALEXTENSIONSANDGALOISEXTENSIONS ConclusionTheoperationsH G F K H KandF L K Aut K L Garemutuallyinverse Theorem FundamentalTheoremofGaloisTheory Withnota tionasabove orderreversingbijectionbetweensubgroupsHofGandintermediate eldsF L K whereasubgroupHcorrespondstoits xed eldL K H andanintermediate eldF L KcorrespondstoGal K L G AsubgroupHofGisnormali theextensionK H FisGalois K H Fisnormal IfH G themap G j K HdeterminesagroupHMofGonto Gal K H F withkernelH andhenceGal K H F G H Proof Alreadydone GaloisGroupsofPolynomials Supposenowf k X aseparablepolynomialandK kasplitting eld The galoisgroupoff Gal f Gal K k SupposenowfhasdistinctrootsinK say d soK k d Sinceak AMofKisdeterminedbyitsextensionontheroots i wehavean injectionHM G S d Propertiesoffwillbere ectedintheproperties ifG Lemma Withassumptionsasabove f k X irreducible Gacts transitivelyonrootsoff ie G isatransitivesubgroupofS d Proof Soforlowdegreegaloisgroupsveryrestricted Degree Eitherfreducible G orirreducible G C Degree Eitherfreducible G C orirreducible G S C QuestionForf k X irreducibleandseparableofdegreed whenisthe imageofgaloisgroupinA d De nitionThediscriminantDofapolynomialf k X withdistinct rootsinas f eg firreducibleandseparable isde nedasfollows Let d berootsoffinas fKandset Q i j i j Thediscrim inant D Y i j i j d d is xedbyalltheelementsofG Gal K k andhenceisanelementofk Assumingfirreducibleandseparablewehave and assumingchar G A d xedunderG sinceforanyodd K Dasquareink CHAPTER NORMALEXTENSIONSANDGALOISEXTENSIONS Example Cubicsf X bX cX dandchar firreducible separable ThegaloisgroupGisA C i D f asquareinkandS otherwise To calculateD f setg X f X b offormX pX q Since aroot off b arootofgdeduce f g D f D g Lemma Iffirreducibleseparablepolynomialink X L kasplitting eld LarootoffandK k Lthen D f d d Nm K L f Proof Example Whenk Q wecanconsiderthes f ofpolynomialf Q X asasub eld ofC thismaybeuseful e g iff Q X irreducibleofdegreedwithpreciselytwoimaginaryroots thegaloisgroupcontainsatransposition complexconjugationisanelement ofGal f andswitchestwoimaginaryroots ElementarygrouptheoryshowsthatifG S p pprime istransitiveand containsatransposition thenitcontainsalltranspositionsandhenceG S p Manycubicsf Q X havegaloisgroupS forthisreason Itisahelpto knowwhatthetransitivesubgroupsofS n are ifwearetryingtocalculate thegaloisgroupofapolynomial Thefollowingclassi cationforn is leftasanextendedexerciseingrouptheory Proposition ThetransitivesubgroupsofS areS A D andV C C thegroupfid g ThetransitivesubgroupsofS areS A G D C whereG isgenerated bya cycleanda cycle RemarkAllthesepossibilitiesoccur Chapter GaloisGroupsofFiniteFields RecallIfFa eldwithjFj q thenq p r wherecharF p De nitionGivensucha niteF F p AM F Fgiven x x p calledthefrobeniusautomorphism since x y p x p y p andx p x isaninfective eld HMF F whichissurjectivesincejFjis nite andhenceanAM Now observex p x x F p theprimesub eld Moreover sincea q F wehavea q a a F i e everyelement ofFisarootofX q X ButX q Xhasatmostqroots sotheseareall theroots thereforeFisthes f ofX q XoverF p andassuchisuniqueup toIM ExistanceIfq p r letFbethes f ofX q XoverF p wehavethe frobeniusAm F Fandwecantakethe xed eldF ofh r i Observethat r x x xisarootofX q XandsoF Fi
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025江苏扬州大数据集团子公司管理人员招聘1人笔试备考题库及完整答案详解1套
- 2025江苏扬州宝应县“乡村振兴青年人才”招聘67人笔试模拟试题含答案详解
- 2025江苏宿迁市泗阳县招聘乡村医生27人笔试备考试题含答案详解
- 2025广西来宾市招聘乡村振兴专员221人笔试备考题库含答案详解
- 2025年鄂尔多斯市公务员考试行测真题附答案详解(完整版)
- 期末试卷(四)(含答案含听力原文无听力音频)-2024-2025学年人教PEP版英语(新教材)三年级下册
- 四川省2024-2025学年高二上学期12月学情检查(联考)物理试题(解析版)
- 四川省成都市2024-2025学年高三上学期开学摸底联考物理试卷
- 炸鸡店的未来发展趋势与展望
- 房地产项目的运营管理策略
- 廻转窑挥发法生产氧化锌作业指导书
- 电气焊(割)操作工安全生产责任制
- 学校学生评教表
- 风力发电场集电线路优化分析
- 2023高考地理高三一轮复习教学计划和备考策略
- 挖掘机装载机定期检验报告
- 新版现代西班牙语第二册课后答案
- 新版大学英语四级考试全真模拟试题 (九套)及参考答案
- 园林植物病虫害防治技术操作质量标准
- 快递邮寄申请表
- 隔油池图集pdf国标图集
评论
0/150
提交评论