



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
授课教案教学标题全等三角形判定综合应用教学目标熟练掌握全等三角形的四种判定方法,在实际问题中能灵活应用.教学重难点重点掌握全等三角形证明的思路,有一定分析问题的能力.上次作业检查授课内容:一 热身训练1.如图1,若ABCADE,EAC=35,则BAD=_度.2.如图2,ABCD,ADBC,OE=OF,图中全等三角形共有_对.3.已知:如图3,ABCDEF,ABDE,要说明ABCDEF,(1)若以“SAS”为依据,还须添加的一个条件为_.(2)若以“ASA”为依据,还须添加的一个条件为_.(3)若以“AAS”为依据,还须添加的一个条件为_.4.如图4,在ABC中,C90,AD平分BAC,DEAB于E,则_.5.如图5,AB=CD,AD=BC,O为BD中点,过O点作直线与DA、BC延长线交于E、F,若,EO=10,则DBC= ,FO= .二 知识梳理1 判定和性质判定方法:边角边(SAS)、角边角(ASA)角角边(AAS)、边边边(SSS)性 质:对应边相等,对应角相等,对应中线相等,对应高相等,对应角平分线相等注: 判定两个三角形全等必须有一组边对应相等; 全等三角形面积相等2证题的思路:三 典型例题例1 已知:如图AC=BD,CAB=DBA。求证:CAD=DBC。分析:由已知,再加上一组公共边等,可以得到ABC与BAD全等,由性质得对应角相等,再由等量公理可得证。例2 已知,如图,HIBC,JIAB。求证:BIHIBJ分析:从已知寻找三角形全等的条件:由平行,可以得角等,又有一组公共边,因此选择用角边角公理可证明。例3 已知:如图,AB=DC,AE=DF,CE=FB,求证:AF=DE。分析:要证AF=DE,可证AFB与DEC全等,但还缺少相关角相等的条件,所以先证AEB与DFC全等。例4已知:如图,AB=DE,BC=EF,CD=FA,A= D。求证:B= E。四 课堂练习1.如图和均为等边三角形,求证:DC=BE。2.已知:BC=DE,B=E,C=D,F是CD中点,求证:1=2ABCDEF21五 课后反思:根据已知的条件找残缺的条件证三角形全等,思路要开阔。1.如图1,若ABCADE,EAC=35,则BAD=_度.2.如图2,ABCD,ADBC,OE=OF,图中全等三角形共有_对.3.已知:如图3,ABCDEF,ABDE,要说明ABCDEF,(1)若以“SAS”为依据,还须添加的一个条件为_.(2)若以“ASA”为依据,还须添加的一个条件为_.(3)若以“AAS”为依据,还须添加的一个条件为_.4.如图4,在ABC中,C90,AD平分BAC,DEAB于E,则_.5.如图5,AB=CD,AD=BC,O为BD中点,过O点作直线与DA、BC延长线交于E、F,若,EO=10,则DBC= ,FO= .判定和性质判定方法:边角边(SAS)、角边角(ASA)角角边(AAS)、边边边(SSS)性 质:对应边相等,对应角相等,对应中线相等,对应高相等,对应角平分线相等注: 判定两个三角形全等必须有一组边对应相等; 全等三角形面积相等证题的思路:例1 已知:如图AC=BD,CAB=DBA。求证:CAD=DBC。例2 已知,如图,HIBC,JIAB。求证:BIHIBJ例3 已知:如图,AB=DC,AE=DF,CE=FB,求证:AF=DE。例4已知:如图,AB=DE,BC=EF,CD=FA,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- (正式版)DB15∕T 3667-2024 《光温诱导甜菜当年抽薹繁育技术规程》
- (正式版)DB15∕T 3403-2024 《困境儿童家庭监护能力评估指南》
- (正式版)DB15∕T 3279-2023 《苜蓿根腐病锐顶镰刀菌鉴定方法》
- 创新成果兑现责任书(6篇)
- 学习计划的议论文(6篇)
- 护理人社面试题库及答案大全
- 大庆疫情考试题及答案
- 农业绿色发展规划与实施合同
- 教育领域师资承诺书(7篇)
- 企业营销团队活动策划模板
- 通天河水电规划
- 数据中心基础设施标识标志
- 盟史简介12.10.18课件
- 2023年04月湖北经济学院创新创业学院招聘1名孵化器日常管理专员笔试参考题库答案解析
- 法律方法阶梯
- GB/T 26081-2022排水工程用球墨铸铁管、管件和附件
- GB/T 26480-2011阀门的检验和试验
- 医院普通外科病史采集、查体及病历书写要点精讲课件
- 食品执行标准对照新版表
- 最新苏教牛津译林版英语五年级上册Unit 4《Hobbies》Grammar time 公开课课件
- 路面压浆施工方案
评论
0/150
提交评论