二次函数知识点教案和讲义.doc_第1页
二次函数知识点教案和讲义.doc_第2页
二次函数知识点教案和讲义.doc_第3页
二次函数知识点教案和讲义.doc_第4页
二次函数知识点教案和讲义.doc_第5页
免费预览已结束,剩余9页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

龙文教育个性化辅导教案讲义 任教科目:初中数学授课题目:二次函数(一)年 级:初三任课教师:钱财华授课对象:方倩云武汉龙文个性化教育 郭茨口校区 教研组组长签字: 教学主任签名: 日 期: 武汉龙文教育学科辅导教案学生方倩云教师钱财华学科初中数学时间2013.7.18星期四时间段15:00-16:00教学目标:了解不等式的性质和解法教学重难点:不等式的解法教学流程及授课提纲【课前热身】【不等式的性质】【不等式的解法】【不等式易错题】【总结题型】本次课后作业:历年中考试题课后小记:学生对于本次课的评价: 特别满意 满意 一般 差 学生签字:教师评定:1、学生上次作业评价: 好 较好 一般 差 2、学生本次上课情况评价: 好 较好 一般 差 教师签字:附:龙文教育教务处武汉龙文教育学科辅导讲义授课对象方倩云授课教师钱财华授课时间2h授课题目二次函数复习课 型教学案使用教具白板、草稿纸教学目标熟悉八年级下册各章节基础知识;掌握常考题型教学重点和难点四边形的证明与计算参考教材中考53教学流程及授课详案二次函数知识点:1二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数,而可以为零二次函数的定义域是全体实数2. 二次函数的结构特征: 等号左边是函数,右边是关于自变量的二次式,的最高次数是2 是常数,是二次项系数,是一次项系数,是常数项二次函数的基本形式1. 二次函数基本形式:的性质:结论:a 的绝对值越大,抛物线的开口越小。总结:的符号开口方向顶点坐标对称轴性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值2. 的性质: 结论:上加下减。同左上加,异右下减总结:的符号开口方向顶点坐标对称轴性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值3. 的性质:结论:左加右减。同左上加,异右下减总结:的符号开口方向顶点坐标对称轴性质向上X=h时,随的增大而增大;时,随的增大而减小;时,有最小值向下X=h时,随的增大而减小;时,随的增大而增大;时,有最大值 4. 的性质:总结:的符号开口方向顶点坐标对称轴性质向上X=h时,随的增大而增大;时,随的增大而减小;时,有最小值向下X=h时,随的增大而减小;时,随的增大而增大;时,有最大值二次函数图象的平移 1. 平移步骤: 将抛物线解析式转化成顶点式,确定其顶点坐标; 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下: 2. 平移规律 在原有函数的基础上“值正右移,负左移;值正上移,负下移”概括成八个字“同左上加,异右下减”三、二次函数与的比较请将利用配方的形式配成顶点式。请将配成。总结:从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中四、二次函数图象的画法五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.五、二次函数的性质 1. 当时,抛物线开口向上,对称轴为,顶点坐标为当时,随的增大而减小;当时,随的增大而增大;当时,有最小值 2. 当时,抛物线开口向下,对称轴为,顶点坐标为当时,随的增大而增大;当时,随的增大而减小;当时,有最大值六、二次函数解析式的表示方法1. 一般式:(,为常数,);2. 顶点式:(,为常数,);3. 两根式:(,是抛物线与轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系 1. 二次项系数二次函数中,作为二次项系数,显然 当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越大; 当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越大总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大小2. 一次项系数 在二次项系数确定的前提下,决定了抛物线的对称轴 在的前提下,当时,即抛物线的对称轴在轴左侧;ab同号同左上加当时,即抛物线的对称轴就是轴;当时,即抛物线对称轴在轴的右侧a,b异号异右下减 在的前提下,结论刚好与上述相反,即当时,即抛物线的对称轴在轴右侧;a,b异号异右下减当时,即抛物线的对称轴就是轴;当时,即抛物线对称轴在轴的左侧ab同号同左上加总结起来,在确定的前提下,决定了抛物线对称轴的位置总结: 同左上加 异右下减 3. 常数项 当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正; 当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为; 当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负 总结起来,决定了抛物线与轴交点的位置 总之,只要都确定,那么这条抛物线就是唯一确定的二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式二、二次函数图象的对称 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于轴对称 关于轴对称后,得到的解析式是; 关于轴对称后,得到的解析式是; 2. 关于轴对称 关于轴对称后,得到的解析式是; 关于轴对称后,得到的解析式是; 3. 关于原点对称 关于原点对称后,得到的解析式是; 关于原点对称后,得到的解析式是; 4. 关于顶点对称 关于顶点对称后,得到的解析式是;关于顶点对称后,得到的解析式是5. 关于点对称 关于点对称后,得到的解析式是 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与轴交点情况):一元二次方程是二次函数当函数值时的特殊情况.图象与轴的交点个数: 当时,图象与轴交于两点,其中的是一元二次方程的两根这两点间的距离. 当时,图象与轴只有一个交点; 当时,图象与轴没有交点. 当时,图象落在轴的上方,无论为任何实数,都有; 当时,图象落在轴的下方,无论为任何实数,都有 2. 抛物线的图象与轴一定相交,交点坐标为,; 3. 二次函数常用解题方法总结: 求二次函数的图象与轴的交点坐标,需转化为一元二次方程; 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; 根据图象的位置判断二次函数中,的符号,或由二次函数中,的符号判断图象的位置,要数形结合; 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与轴的一个交点坐标,可由对称性求出另一个交点坐标.抛物线与轴有两个交点二次三项式的值可正、可零、可负一元二次方程有两个不相等实根抛物线与轴只有一个交点二次三项式的值为非负一元二次方程有两个相等的实数根抛物线与轴无交点二次三项式的值恒为正一元二次方程无实数根. 与二次函数有关的还有二次三项式,二次三项式本身就是所含字母的二次函数;下面以时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考: 初中数学二次函数基础复习一、二次函数的定义(考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式)1、下列函数中,是二次函数的是 .;。2、在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为,则t4秒时,该物体所经过的路程为 。3、若函数是关于的二次函数,则的取值范围为 。4、已知函数是二次函数,则 。5、若函数是关于的二次函数,则的值为 。6、已知函数是二次函数,求的值。7、已知抛物线的开口向下,则的值为 。8、已知抛物线与直线有唯一交点,求k的值。9、通过配方,写出下列函数的开口方向、对称轴和顶点坐标:(1); (2); (3)二、二次函数的对称轴、顶点、最值(技法:如果解析式为顶点式,则最值为k;如果解析式为一般式则最值为)1. 抛物线经过坐标原点,则的值为 .2. 抛物线的顶点坐标为(1,3),则b ,c .3. 抛物线yx23x的顶点在 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限4. 若抛物线yax26x经过点(2,0),则抛物线顶点到坐标原点的距离为 ( ) A. B. C. D.5. 若直线yaxb不经过二、四象限,则抛物线yax2bxc ( ) A.开口向上,对称轴是y轴 B.开口向下,对称轴是y轴 C.开口向下,对称轴平行于y轴 D.开口向上,对称轴平行于y轴6. 已知抛物线yx2(m1)x的顶点的横坐标是2,则m的值是 7. 抛物线的对称轴是 8. 若二次函数的对称轴是直线x1,则 .9. 当n_,m_时,函数y(mn)(mn)x的图象是抛物线,且其顶点在原点,此抛物线的开口_.10. 已知二次函数,当a 时,该函数的最小值为?11. 已知二次函数的最小值为,那么 12. (易错题)已知二次函数有最小值为,则 13. 已知二次函数的最小值为3,则 14. 已知二次函数的图象上有三点且,则的大小关系为 15. 抛物线向左平移个单位,再向下平移个单位,所得到的抛物线的关系式为 。16. 将抛物线向左平移个单位,再向下平移个单位,所得到的抛物线的关系式为 。17. 将抛物线向上平移1个单位,再向右平移1个单位,得到则a ,b ,c .18. 将抛物线yax2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,1),那么移动后的抛物线的关系式为_ _.三、函数的交点19. 抛物线与直线的交点坐标为 。20. 直线与抛物线的图象有 个交点。四、函数的的对称21. 抛物线关于y轴对称的抛物线的关系式为 。22. 抛物线关于x轴对称的抛物线为,则a= ,b= ,c= . 五、函数的图象特征与a、b、c的关系技法:对于的图象特征与a、b、c的关系为:抛物线开口由a定,上正下负;对称轴位置a、b定,左同右异,b为0时是y轴;与y轴的交点由c 定,上正下负,c为0时过原点。23. 已知抛物线的图象如图所示,则a、b、c的符号为().B.C.D. 24. 已知抛物线的图象如图所示,则下列结论正确的是( )ABCD抛物线中,b4a,它的图象如图,有以下结论:;其中正确的为( )ABCD25. 当是一次函数与二次函数在同一坐标系内的图象可能是( )26. 已知二次函数yax2bxc,如果abc,且abc0,则它的图象可能是图所示的( ) 27. A.a0,b0 BDCA二次函数yax2bxc, 图象如图所示,则反

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论