



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平方差公式(提高) 知识讲解【学习目标】1. 能运用平方差公式把简单的多项式进行因式分解.2. 会综合运用提公因式法和平方差公式把多项式分解因式;3发展综合运用知识的能力和逆向思维的习惯.【要点梳理】要点一、公式法平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:要点诠释:(1)逆用乘法公式将特殊的多项式分解因式. (2)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.(3)套用公式时要注意字母和的广泛意义,、可以是字母,也可以是单项式或多项式.【高清课堂400108 因式分解之公式法 知识要点】要点二、因式分解步骤(1)如果多项式的各项有公因式,先提取公因式;(2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到)要点三、因式分解注意事项(1)因式分解的对象是多项式;(2)最终把多项式化成乘积形式;(3)结果要彻底,即分解到不能再分解为止【典型例题】类型一、公式法平方差公式【高清课堂400108 因式分解之公式法 例1】1、分解因式:(1); (2); (3)【思路点拨】(1)把看做整体,变形为后分解(2)可写成,可写成,和分别相当于公式里的和(3)把、看作一个整体进行分解【答案与解析】解:(1)(2)(3)【总结升华】注意套用公式时要注意字母的广泛意义,可以是字母,也可以是单项式或多项式.举一反三:【变式】将下列各式分解因式: (1); (2)(3); (4);【答案】解:(1)原式 (2)原式 (3)原式(4)原式2、分解因式: (1); (2); (3); (4)【答案与解析】解:(1)(2)(3)(4)【总结升华】(1)如果多项式的各项中含有公因式,那么先提取公因式,再运用平方差公式分解(2)因式分解必须进行到每一个多项式的因式都不能分解为止举一反三:【变式】(2015杭州模拟)先化简,再求值:(2a+3b)2(2a3b)2,其中a=【答案】解:原式=(2a+3b+2a3b)(2a+3b2a+3b)=4a6b=24ab,当a=,即ab=时,原式=24ab=4类型二、平方差公式的应用3、【答案与解析】解: 【总结升华】本题考查了因式分解的应用,先利用平方差公式,再两两约分即可求解,解题的关键是应用平方差公式简便计算4、(2015春成武县期末)阅读下面的计算过程:(2+1)(22+1)(24+1)=(21)(2+1)(22+1)(24+1)=(221)(22+1)(24+1)=(241)(24+1)=(281)根据上式的计算方法,请计算:(1)(2)(3+1)(32+1)(34+1)(332+1)【思路点拨】(1)原式变形后,利用平方差公式化简,计算即可得到结果;(2)原式变形后,利用平方差公式化简,计算即可得到结果【答案与解析】解:(1)原式=2(1)(1+)(1+)(1+)(1+)=2(1)(1+)(1+)(1+)=2(1)(1+)(1+)=2(1)=;(2)原式=(31)(3+1)(32+1)(34+1)(332+1)=(321
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年哈尔滨石化分公司春季高校毕业生招聘模拟试卷及答案详解(必刷)
- 2025年冀北博望电力产业管理(北京)有限公司高校毕业生招聘(第三批)模拟试卷完整参考答案详解
- HO-PEG-NH-Fmoc-MW-1000-生命科学试剂-MCE
- Hepoxilin-A3-methyl-ester-HxA3-methyl-ester-生命科学试剂-MCE
- 2025贵州省农业科学院引进急需紧缺人才3人考前自测高频考点模拟试题及一套答案详解
- 2025河南新乡医学院辅导员招聘12人模拟试卷及一套完整答案详解
- 2025年春季漳州能源校园招聘全面启动考前自测高频考点模拟试题(含答案详解)
- 2025江苏衢州市常山县招聘专职社区工作者12人模拟试卷附答案详解(模拟题)
- 沙盒监管在金融科技中的应用
- 2025华晋焦煤井下岗位高校毕业生招聘260人(山西)模拟试卷及1套参考答案详解
- 非标自动化设备调试流程
- 济南社工招聘试题及答案
- 学校净水器租售合同协议
- 二手车股东合作合同协议
- 公司生产线管理制度
- 土方内倒合同(2025年版)
- 初中数学教师职称评审中的教学反思
- 储能站施工组织设计施工技术方案(技术标)
- 2025年上半年农牧民技术培训工作总结(2篇)
- 基于深度学习的车辆重识别研究进展
- 【培训课件】《统计法》宣传课件 建立健全法律制度依法保障数据质量
评论
0/150
提交评论