欧姆龙位移传感器.docx_第1页
欧姆龙位移传感器.docx_第2页
欧姆龙位移传感器.docx_第3页
欧姆龙位移传感器.docx_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

欧姆龙位移传感器:/category/1497_1.html欧姆龙位移传感器工品汇,工业品分销采购平台,与国内外上千家工业品品牌合作,如欧姆龙、德力西、ABB、施耐德、西门子等,10万余种产品,正品保障,为您节省时间和成本,提供专业的MRO采购服务!欧姆龙位移传感器被应用于很多领域,需要的型号也有所不同,工品汇拥有齐全的位移传感器型号和优惠的价格,如果您想采购欧姆龙位移传感器请点击欧姆龙进行采购。欧姆龙位移传感器人们以经典电磁学为理论基础,把不便于定量检测和处理的位移、位置、液位、尺寸、流量、速度、振动等物理量转换为易于定量检测、便于作信息传输与处理的电学量。这就是在生产生活中被广泛应用的位移传感器。位移传感器位移传感器又称为线性传感器,是一种属于金属感应的线性 器件,传感器的作用是把各种被测物理量转换为电量。位移是和物体的位置在运动过程中移动有关的量,位移的测量方式所涉及的范围是相当广泛的。小位移通常用应变式、电感式、差动变压器式、涡流式、霍尔传感器来检测,大的位移常用感应同步器、光栅、容栅、磁栅等传感技术来测量。其中光栅传感器因具有易实现数字化、精度高(目前分辨率最高的可达到纳米级)、抗干扰能力强、没有人为读数误差、安装方便、使用可靠等优点,在机床加工、检测仪表等行业中得到日益广泛的应用。位移传感器的分类及原理按工作原理分:电位器式位移传感器它通过电位器元件将机械位移转换成与之成线性或任意函数关系的电阻或电压输出。普通直线电位器和圆形电位器都可分别用作直线位移和角位移传感器。但是,为实现测量位移目的而设计的电位器,要求在位移变化和电阻变化之间有一个确定关系。电位器式位移传感器的可动电刷与被测物体相连。物体的位移引起电位器移动端的电阻变化。阻值的变化量反映了位移的量值,阻值的增加还是减小则表明了位移的方向。通常在电位器上通以电源电压,以把电阻变化转换为电压输出。线绕式电位器由于其电刷移动时电阻以匝电阻为阶梯而变化,其输出特性亦呈阶梯形。如果这种位移传感器在伺服系统中用作位移反馈元件,则过大的阶跃电压会引起系统振荡。因此在电位器的制作中应尽量减小每匝的电阻值。电位器式传感器的另一个主要缺点是易磨损。它的优点是:结构简单,输出信号大,使用方便,价格低廉。磁致伸缩位移传感器磁致伸缩位移传感器,通过内部非接触式的测控技术精确地检测活动磁环的绝对位置来测量被检测产品的实际位移值的。是利用磁致伸缩原理、通过两个不同磁场相交产生一个应变脉冲信号来准确地测量位置的。测量元件是一根波导管,波导管内的敏感元件由特殊的磁致伸缩材料制成的。测量过程是由传感器的电子室内产生电流脉冲,该电流脉冲在波导管内传输,从而在波导管外产生一个圆周磁场,当该磁场和套在波导管上作为位置变化的活动磁环产生的磁场相交时,由于磁致伸缩的作用,波导管内会产生一个应变机械波脉冲信号,这个应变机械波脉冲信号以固定的声音速度传输,并很快被电子室所检测到。这个应变机械波脉冲信号在波导管内的传输时间和活动磁环与电子室之间的距离成正比,通过测量时间,就可以高度精确地确定这个距离。由于输出信号是一个真正的绝对值,而不是比例的或放大处理的信号,所以不存在信号漂移或变值的情况,更无需定期重标。磁致伸缩位移传感器是根据磁致伸缩原理制造的高精度、长行程绝对位置测量的位移传感器。它采用内部非接触的测量方式,由于测量用的活动磁环和传感器自身并无直接接触,不至于被摩擦、磨损,因而其使用寿命长、环境适应能力强,可靠性高,安全性好,便于系统自动化工作,即使在恶劣的工业环境下(如容易受油溃、尘埃或其他的污染场合),也能正常工作。传感器采用了高科技材料和先进的电子处理技术,因而它能应用在高温、高压和高振荡的环境中。传感器输出信号为绝对位移值,即使电源中断、重接,数据也不会丢失,更无须重新归零。由于敏感元件是非接触的,就算不断重复检测,也不会对传感器造成任何磨损,可以大大地提高检测的可靠性和使用寿命。行程可达3米或更长,标称精度为0.05% FS,行程1米以上传感器精度可达0.02% F.S,重复性可达0.002% FS,因此它得到广泛的应用。按运动方式分直线位移传感器直线位移传感器的功能在于把直线机械位移量转换成电信号。为了达到这一效果,通常将可变电阻滑轨定置在传感器的固定部位,通过滑片在滑轨上的位移来测量不同的阻值。传感器滑轨连接稳态直流电压,允许流过微安培的小电流,滑片和始端之间的电压,与滑片移动的长度成正比。将传感器用作分压器可最大限度降低对滑轨总阻值精确性的要求,因为由温度变化引起的阻值变化不会影响到测量结果。角度位移传感器角度位移传感器应用于障碍处理:使用角度传感器来控制你的轮子可以间接的发现障碍物。原理非常简单:如果马达角度传感器构造运转,而齿轮不转,说明你的机器已经被障碍物给挡住了。此技术使用起来非常简单,而且非常有效;唯一要求就是运动的轮子不能在地板上打滑(或者说打滑次数太多),否则你将无法检测到障碍物。一个空转的齿轮连接到马达上就可以避免这个问题,这个轮子不是由马达驱动而是通过装置的运动带动它:在驱动轮旋转的过程中,如果惰轮停止了,说明你碰到障碍物了。按检测材质分霍耳式位移传感器它的测量原理是保持霍耳元件(见半导体磁敏元件)的激励电流不变,并使其在一个梯度均匀的磁场中移动,则所移动的位移正比于输出的霍耳电势。磁场梯度越大,灵敏度越高;梯度变化越均匀,霍耳电势与位移的关系越接近于线性。图2中是三种产生梯度磁场的磁系统:a系统的线性范围窄,位移Z=0时,霍耳电势0;b系统当Z2毫米时具有良好的线性,Z=0时,霍耳电势=0;c系统的灵敏度高,测量范围小于1毫米。图中N、S分别表示正、负磁极。霍耳式位移传感器的惯性小、频响高、工作可靠、寿命长,因此常用于将各种非电量转换成位移后再进行测量的场合。光电式位移传感器它根据被测对象阻挡光通量的多少来测量对象的位移或几何尺寸。特点是属于非接触式测量,并可进行连续测量。光电式位移传感器常用于连续测量线材直径或在带材边缘位置控制系统中用作边缘位置传感器。欧姆龙传感器价格表:商品名称商品型号市场价(元)备注欧姆龙 放大器分离型接近传感器,传感器头;E2C-ED02E2C-ED023683.99工品汇会员享分销价欧姆龙 放大器分离型接近传感器,传感器头;E2C-ED02-FE2C-ED02-F3866.41工品汇会员享分销价欧姆龙 放大器分离型接近传感器,传感器头;E2C-ED02-SE2C-ED02-S4967.43工品汇会员享分销价欧姆龙 放大器分离型接近传感器,放大器单元;E2C-EDA11 2ME2C-EDA11 2M3073.91工品汇会员享分销价欧姆龙 放大器分离型接近传感器,放大器单元;E2C-EDA21 2ME2C-EDA21 2M3073.91工品汇会员享分销价欧姆龙 放大器分离型接近传感器,放大器单元;E2C-EDA41 2ME2C-EDA41 2M3073.91工品汇会员享分销价欧姆龙 放大器分离型接近传感器,放大器单元;E2C-EDA6E2C-EDA63170.55工品汇会员享分销价欧姆龙 放大器分离型接近传感器,放大器单元;E2C-EDA7E2C-EDA73036.49工品汇会员享分销价欧姆龙 放大器分离型接近传感器,放大器单元;E2C-EDA8E2C-EDA83036.49工品汇会员享分销价欧姆龙 放大器分离型接近传感器,放大器单元;E2C-EDA9E2C-EDA93036.49工品汇会员享分销价欧姆龙 放大器分离型接近传感器,传感器头;E2C-EDR6-FE2C-EDR6-F4007.25工品汇会员享分销价欧姆龙 放大器分离型接近传感器,传感器头;E2C-EM02E2C-EM023683.99工品汇会员享分销价欧姆龙 放大器分离型接近传感器,传感器头;E2C-EM02-FE2C-EM02-F3866.41工品汇会员享分销价欧姆龙 放大器分离型接近传感器,传感器头;E2C-EM02-SE2C-EM02-S4967.43工品汇会员享分销价欧姆龙 放大器分离型接近传感器,传感器头;E2C-EM02HE2C-EM02H8465.78工品汇会员享分销价欧姆龙 放大器分离型接近传感器,传感器头;E2C-EM07ME2C-EM07M3683.99工品汇会员享分销价欧姆龙 放大器分离型接近传感器,传感器头;E2C-EM07M-FE2C-EM07M-F3866.41工品汇会员享分销价欧姆龙 放大器分离型接近传感器,传感器头;E2C-EM07M-SE2C-EM07M-S4967.43工品汇会员享分销价欧姆龙 放大

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论