(45专题)2014年中考数学试题解析分类汇编汇总13 二次函数.doc_第1页
(45专题)2014年中考数学试题解析分类汇编汇总13 二次函数.doc_第2页
(45专题)2014年中考数学试题解析分类汇编汇总13 二次函数.doc_第3页
(45专题)2014年中考数学试题解析分类汇编汇总13 二次函数.doc_第4页
(45专题)2014年中考数学试题解析分类汇编汇总13 二次函数.doc_第5页
已阅读5页,还剩103页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二次函数一、 选择题1. (2014海南,第13题3分)将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是()A向左平移2个单位B向右平移2个单位C向上平移2个单位D向下平移2个单位考点:二次函数图象与几何变换分析:根据图象左移加,可得答案解答:解:将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是向左平移了2个单位,故选:A点评:本题考查了二次函数图象与几何变换,函数图象平移规律是:左加右减,上加下减2. (2014黑龙江绥化,第17题3分)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是x=1,下列结论正确的是()Ab24acBac0Cab+c0D4a+2b+c0考点:二次函数图象与系数的关系专题:数形结合分析:根据抛物线与x轴有两个交点有b24ac0可对A进行判断;由抛物线开口向下得a0,由抛物线与y轴的交点在x轴上方得c0,则可对B进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(1,0),所以ab+c=0,则可C选项进行判断;由于x=2时,函数值小于0,则有4a+2b+c0,于是可对D选项进行判断解答:解:抛物线与x轴有两个交点,b24ac0,即b24ac,所以A选项正确;抛物线开口向下,a0,抛物线与y轴的交点在x轴上方,c0,ac0,所以B选项错误;抛物线过点A(3,0),二次函数图象的对称轴是x=1,抛物线与x轴的另一个交点为(1,0),ab+c=0,所以C选项错误;当x=2时,y0,4a+2b+c0,所以D选项错误故选A点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a0)的图象为抛物线,当a0,抛物线开口向上;对称轴为直线x=;抛物线与y轴的交点坐标为(0,c);当b24ac0,抛物线与x轴有两个交点;当b24ac=0,抛物线与x轴有一个交点;当b24ac0,抛物线与x轴没有交点3. (2014湖北宜昌,第15题3分)二次函数y=ax2+b(b0)与反比例函数y=在同一坐标系中的图象可能是()ABCD考点:二次函数的图象;反比例函数的图象专题:数形结合分析:先根据各选项中反比例函数图象的位置确定a的范围,再根据a的范围对抛物线的大致位置进行判断,从而确定该选项是否正确解答:解:A、对于反比例函数y=经过第二、四象限,则a0,所以抛物线开口向下,所以A选项错误;B、对于反比例函数y=经过第一、三象限,则a0,所以抛物线开口向上,b0,抛物线与y轴的交点在x轴上方,所以B选项正确;C、对于反比例函数y=经过第一、三象限,则a0,所以抛物线开口向上,所以C选项正确;D、对于反比例函数y=经过第一、三象限,则a0,所以抛物线开口向上,而b0,抛物线与y轴的交点在x轴上方,所以D选项错误故选B点评:本题考查了二次函数的图象:二次函数y=ax2+bx+c(a、b、c为常数,a0)的图象为抛物线,当a0,抛物线开口向上;当a0,抛物线开口向下对称轴为直线x=;与y轴的交点坐标为(0,c)也考查了反比例函数的图象4. (2014江西,第6题3分)已知反比例函数的图像如右图所示,则二次函数的图像大致为( )【答案】 D.【考点】 二次函数的图象与性质;反比例函数的图象与性质【分析】 反比例函数的图像作用是确定k的正负,从双曲线在二、四象限可知k0或a0),二看对称轴位置,三看在y轴上的截距(即c),四看与x轴的交点个数(根据根的判别式的正负来确定)。本题可先由反比例函数的图象得到字母系数k1,再与二次函数的图象的开口方向和对称轴的位置相比较看是否一致,最终得到答案【解答】 解:函数的图像的图象经过二、四象限,k0,由图知,当x=1时,y=k1,k1,抛物线y=2kx2-4x+k2开口向下,对称轴为对称轴在1与0之间,故选D【点评】 本题主要考查了二次函数与反比例函数的图象与系数的综合应用,要求对二次函数和反比例函数的图像和性质有比较深刻地理解,并能熟练地根据二次函数图像中的信息作出分析和判断,正确判断抛物线开口方向和对称轴位置是解题关键属于基础题5、(2014宁夏,第11题8分)已知a0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()ABCD考点:二次函数的图象;正比例函数的图象分析:本题可先由一次函数y=ax图象得到字母系数的正负,再与二次函数y=ax2的图象相比较看是否一致(也可以先固定二次函数y=ax2图象中a的正负,再与一次函数比较)解答:解:A、函数y=ax中,a0,y=ax2中,a0,但当x=1时,两函数图象有交点(1,a),错误;B、函数y=ax中,a0,y=ax2中,a0,错误;C、函数y=ax中,a0,y=ax2中,a0,但当x=1时,两函数图象有交点(1,a),正确;D、函数y=ax中,a0,y=ax2中,a0,错误故选C点评:函数中数形结合思想就是:由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状6(2014陕西,第10题3分)二次函数y=ax2+bx+c(a0)的图象如图,则下列结论中正确的是()A c1Bb0C2a+b0D9a+c3b考点:二次函数图象与系数的关系专题:数形结合分析:由抛物线与y轴的交点在点(0,1)的下方得到c1;由抛物线开口方向得a0,再由抛物线的对称轴在y轴的右侧得a、b异号,即b0;由于抛物线过点(2,0)、(4,0),根据抛物线的对称性得到抛物线对称轴为直线x=1,则2a+b=0;由于当x=3时,y0,所以9a3b+c0,即9a+c3B解答:解:抛物线与y轴的交点在点(0,1)的下方c1;抛物线开口向上,a0,抛物线的对称轴在y轴的右侧,x=0,b0;抛物线过点(2,0)、(4,0),抛物线对称轴为直线x=1,2a+b=0;当x=3时,y0,9a3b+c0,即9a+c3B故选D点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a0)的图象为抛物线,当a0,抛物线开口向上;对称轴为直线x=;抛物线与y轴的交点坐标为(0,c);当b24ac0,抛物线与x轴有两个交点;当b24ac=0,抛物线与x轴有一个交点;当b24ac0,抛物线与x轴没有交点7(2014四川成都,第9题3分)将二次函数y=x22x+3化为y=(xh)2+k的形式,结果为()Ay=(x+1)2+4By=(x+1)2+2Cy=(x1)2+4Dy=(x1)2+2考点:二次函数的三种形式分析:根据配方法进行整理即可得解解答:解:y=x22x+3,=(x22x+1)+2,=(x1)2+2故选D点评:本题考查了二次函数的三种形式的转化,熟记配方法的操作是解题的关键8(2014黑龙江哈尔滨,第8题3分)将抛物线y=2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为()Ay=2(x+1)21By2(x+1)2+3Cy=2(x1)2+1Dy=2(x1)2+3考点:二次函数图象与几何变换分析:根据图象右移减,上移加,可得答案解答:解;将抛物线y=2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为y=2(x1)2+3,w w w .x k b 1.c o m故选:D点评:本题考查了二次函数图象与几何变换,函数图象平移的规律是:左加右减,上加下减9. (2014年湖北黄石) (2014湖北黄石,第7题3分)二次函数y=ax2+bx+c(a0)的图象如图,则函数值y0时,x的取值范围是()第2题图A x1Bx3 C1x3 D x1或x3考点:二次函数与不等式(组)分析:根据图象,写出函数图象在x轴上方部分的x的取值范围即可解答:解:由图可知,x1或x3时,y0故选D点评:本题考查了二次函数与不等式,此类题目,利用数形结合的思想求解更简便10. (2014湖北荆门,第4题3分)将抛物线y=x26x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是()A y=(x4)26B y=(x4)22C y=(x2)22Dy=(x1)23考点:二次函数图象与几何变换专题:几何变换分析:先把y=x26x+5配成顶点式,得到抛物线的顶点坐标为(3,4),再把点(3,4)向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为(4,2),然后根据顶点式写出平移后的抛物线解析式解答:解:y=x26x+5=(x3)24,即抛物线的顶点坐标为(3,4),把点(3,4)向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为(4,2),所以平移后得到的抛物线解析式为y=(x4)22故选B点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式11(2014莱芜,第12题3分)已知二次函数y=ax2+bx+c的图象如图所示下列结论:abc0;2ab0;4a2b+c0;(a+c)2b2其中正确的个数有()A1B2C3D4考点:二次函数图象与系数的关系专题:数形结合分析:由抛物线开口方向得a0,由抛物线对称轴在y轴的左侧得a、b同号,即b0,由抛物线与y轴的交点在x轴上方得c0,所以abc0;根据抛物线对称轴的位置得到10,则根据不等式性质即可得到2ab0;由于x=2时,对应的函数值小于0,则4a2b+c0;同样当x=1时,ab+c0,x=1时,a+b+c0,则(ab+c)(a+b+c)0,利用平方差公式展开得到(a+c)2b20,即(a+c)2b2解答:解:抛物线开口向下,a0,抛物线的对称轴在y轴的左侧,x=0,b0,抛物线与y轴的交点在x轴上方,c0,abc0,所以正确;10,2ab0,所以正确;当x=2时,y0,4a2b+c0,所以正确;当x=1时,y0,ab+c0,当x=1时,y0,a+b+c0,(ab+c)(a+b+c)0,即(a+cb)(a+c+b)0,(a+c)2b20,所以正确故选D点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a0)的图象为抛物线,当a0,抛物线开口向上;对称轴为直线x=;抛物线与y轴的交点坐标为(0,c);当b24ac0,抛物线与x轴有两个交点;当b24ac=0,抛物线与x轴有一个交点;当b24ac0,抛物线与x轴没有交点12. (2014青岛,第8题3分)函数y=与y=kx2+k(k0)在同一直角坐标系中的图象可能是()ABCD考点:二次函数的图象;反比例函数的图象分析:本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致解答:解:由解析式y=kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k0,则k0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,错误;B、由双曲线的两支分别位于一、三象限,可得k0,则k0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,正确;C、由双曲线的两支分别位于一、三象限,可得k0,则k0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,错误;D、由双曲线的两支分别位于一、三象限,可得k0,则k0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,错误故选:B点评:本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求13. (2014山西,第6题3分)我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现的数学思想是()A演绎B数形结合C抽象D公理化考点:二次函数的性质;一次函数的性质;反比例函数的性质专题:数形结合分析:从函数解析式到函数图象,再利用函数图象研究函数的性质正是数形结合的数学思想的体现解答:解:学习了一次函数、二次函数和反比例函数,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现了数形结合的数学思想故选B点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a0)的顶点坐标是(,),对称轴直线x=,二次函数y=ax2+bx+c(a0)的图象具有如下性质:当a0时,抛物线y=ax2+bx+c(a0)的开口向上,x时,y随x的增大而减小;x时,y随x的增大而增大;x=,时,y取得最小值,即顶点是抛物线的最低点;当a0时,抛物线y=ax2+bx+c(a0)的开口向下,x时,y随x的增大而增大;x时,y随x的增大而减小;x=时,y取得最大值,即顶点是抛物线的最高点14. (2014丽水,第8题3分)在同一平面直角坐标系内,将函数y=2x2+4x3的图象向右平移2个单位,再向下平移1个单位得到图象的顶点坐标是()A(3,6)B(1,4)C(1,6)D(3,4)考点:二次函数图象与几何变换分析:根据函数图象向右平移减,向下平移减,可得目标函数图象,再根据顶点坐标公式,可得答案解答:解:函数y=2x2+4x3的图象向右平移2个单位,再向下平移1个单位得到图象y=2(x2)2+4(x2)31,即y=2(x1)26,顶点坐标是(1,6),故选:C点评:本题考查了二次函数图象与几何变换,利用了图象的平移规律:上加下减,左加右减15(2014年广西南宁,第10题3分)如图,已知二次函数y=x2+2x,当1xa时,y随x的增大而增大,则实数a的取值范围是()A a1B1a1Ca0D1a2考点:二次函数与不等式(组).分析:先求出二次函数的对称轴,再根据二次函数的增减性列式即可解答:解:二次函数y=x2+2x的对称轴为直线x=1,1xa时,y随x的增大而增大,a1,1a1故选B点评:本题考查了二次函数与不等式,求出对称轴解析式并准确识图是解题的关键16(2014年贵州安顺,第18题4分)如图,二次函数y=ax2+bx+c(a0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为1,3与y轴负半轴交于点C,在下面五个结论中:2ab=0;a+b+c0;c=3a;只有当a=时,ABD是等腰直角三角形;使ACB为等腰三角形的a值可以有四个其中正确的结论是(只填序号)考点:抛物线与x轴的交点;二次函数图象与系数的关系;等腰三角形的判定.分析:先根据图象与x轴的交点A,B的横坐标分别为1,3确定出AB的长及对称轴,再由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断解答:解:图象与x轴的交点A,B的横坐标分别为1,3,AB=4,对称轴x=1,即2a+b=0故错误;根据图示知,当x=1时,y0,即a+b+c0故错误;A点坐标为(1,0),ab+c=0,而b=2a,a+2a+c=0,即c=3A故正确;当a=,则b=1,c=,对称轴x=1与x轴的交点为E,如图,抛物线的解析式为y=x2x,把x=1代入得y=1=2,D点坐标为(1,2),AE=2,BE=2,DE=2,ADE和BDE都为等腰直角三角形,ADB为等腰直角三角形故正确;要使ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,当AB=BC=4时,AO=1,BOC为直角三角形,又OC的长即为|c|,c2=169=7,由抛物线与y轴的交点在y轴的负半轴上,c=,与2a+b=0、ab+c=0联立组成解方程组,解得a=;同理当AB=AC=4时AO=1,AOC为直角三角形,又OC的长即为|c|,c2=161=15,由抛物线与y轴的交点在y轴的负半轴上,c=与2a+b=0、ab+c=0联立组成解方程组,解得a=;同理当AC=BC时在AOC中,AC2=1+c2,在BOC中BC2=c2+9,AC=BC,1+c2=c2+9,此方程无解经解方程组可知只有两个a值满足条件故错误综上所述,正确的结论是故答案是:点评:本题考查了二次函数y=ax2+bx+c的图象与系数的关系:当a0,抛物线开口向上;抛物线的对称轴为直线x=;抛物线与y轴的交点坐标为(0,c)二、填空题1. (2014浙江绍兴,第13题5分)如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=(x6)2+4,则选取点B为坐标原点时的抛物线解析式是y=(x+6)2+4考点:二次函数的应用来源:Z,xx,k.Com分析:根据题意得出A点坐标,进而利用顶点式求出函数解析式即可解答:解:由题意可得出:y=a(x+6)2+4,将(12,0)代入得出,0=a(12+6)2+4,解得:a=,选取点B为坐标原点时的抛物线解析式是:y=(x+6)2+4故答案为:y=(x+6)2+4点评:此题主要考查了二次函数的应用,利用顶点式求出函数解析式是解题关键2(2014黑龙江牡丹江, 第19题3分)已知二次函数y=kx2+(2k1)x1与x轴交点的横坐标为x1,x2(x1x2),则对于下列结论:当x=2时,y=1;方程kx2+(2k1)x1=0有两个不相等的实数根x1,x2;x2x1=其中正确的结论有(只需填写序号即可)考点:抛物线与x轴的交点分析:直接根据抛物线与x轴的交点问题、根与系数的关系对各小题进行逐一分析即可解答:解:当x=2时,y=4k2(2k1)1=4k4k+21=1,故本小题正确;抛物线x轴交点的横坐标为x1、x2(x1x2),方程kx2+(2k1)x1=0有两个不相等的实数根x1、x2,故本小题正确;二次函数y=kx2+(2k1)x1与x轴交点的横坐标为x1、x2(x1x2),x1+x2=,x1x2=x2x1=,故本小题错误,故答案为:点评:本题考查的是抛物线与x轴的交点问题,熟知二次函数与一元二次方程的关系、一元二次方程根与系数的关系是解答此题的关键3三、解答题1. (2014海南,第24题14分)如图,对称轴为直线x=2的抛物线经过A(1,0),C(0,5)两点,与x轴另一交点为B已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由考点:二次函数综合题分析:(1)利用待定系数法求出抛物线的解析式;(2)首先求出四边形MEFP面积的表达式,然后利用二次函数的性质求出最值及点P坐标;(3)四边形PMEF的四条边中,PM、EF长度固定,因此只要ME+PF最小,则PMEF的周长将取得最小值如答图3所示,将点M向右平移1个单位长度(EF的长度),得M1(1,1);作点M1关于x轴的对称点M2,则M2(1,1);连接PM2,与x轴交于F点,此时ME+PF=PM2最小解答:解:(1)对称轴为直线x=2,设抛物线解析式为y=a(x2)2+k将A(1,0),C(0,5)代入得:,解得,y=(x2)2+9=x2+4x+5(2)当a=1时,E(1,0),F(2,0),OE=1,OF=2设P(x,x2+4x+5),如答图2,过点P作PNy轴于点N,则PN=x,ON=x2+4x+5,MN=ONOM=x2+4x+4S四边形MEFP=S梯形OFPNSPMNSOME=(PN+OF)ONPNMNOMOE=(x+2)(x2+4x+5)x(x2+4x+4)11=x2+x+=(x)2+当x=时,四边形MEFP的面积有最大值为,此时点P坐标为(,)(3)M(0,1),C(0,5),PCM是以点P为顶点的等腰三角形,点P的纵坐标为3令y=x2+4x+5=3,解得x=2点P在第一象限,P(2+,3)四边形PMEF的四条边中,PM、EF长度固定,因此只要ME+PF最小,则PMEF的周长将取得最小值如答图3,将点M向右平移1个单位长度(EF的长度),得M1(1,1);作点M1关于x轴的对称点M2,则M2(1,1);连接PM2,与x轴交于F点,此时ME+PF=PM2最小设直线PM2的解析式为y=mx+n,将P(2+,3),M2(1,1)代入得:,解得:m=,n=,y=x当y=0时,解得x=F(,0)a+1=,a=a=时,四边形PMEF周长最小点评:本题是二次函数综合题,第(1)问考查了待定系数法;第(2)问考查了图形面积计算以及二次函数的最值;第(3)问主要考查了轴对称最短路线的性质试题计算量偏大,注意认真计算2. (2014黑龙江龙东,第23题6分)如图,二次函数的图象与x轴交于A(3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D(1)请直接写出D点的坐标(2)求二次函数的解析式(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围考点:抛物线与x轴的交点;待定系数法求二次函数解析式;二次函数与不等式(组).分析:(1)根据抛物线的对称性来求点D的坐标;(2)设二次函数的解析式为y=ax2+bx+c(a0,a、b、c常数),把点A、B、C的坐标分别代入函数解析式,列出关于系数a、b、c的方程组,通过解方程组求得它们的值即可;(3)根据图象直接写出答案解答:解:(1)如图,二次函数的图象与x轴交于A(3,0)和B(1,0)两点,对称轴是x=1又点C(0,3),点C、D是二次函数图象上的一对对称点,D(2,3);(2)设二次函数的解析式为y=ax2+bx+c(a0,a、b、c常数),根据题意得 ,解得 ,所以二次函数的解析式为y=x22x+3;(3)如图,一次函数值大于二次函数值的x的取值范围是x2或x1点评:本题考查了抛物线与x轴的交点,待定系数法求二次函数解析式以及二次函数与不等式组解题时,要注意数形结合数学思想的应用另外,利用待定系数法求二次函数解析式时,也可以采用顶点式方程3. (2014黑龙江绥化,第25题8分)如图,抛物线y=x2+3x+4与x轴交于A、B两点,与y轴交于C点,点D在抛物线上且横坐标为3(1)求tanDBC的值;(2)点P为抛物线上一点,且DBP=45,求点P的坐标考点:二次函数综合题分析:(1)如图,连接CD,过点D作DEBC于点E利用抛物线解析式可以求得点A、B、C、D的坐标,则易推知CDAB,所以BCD=ABC=45利用直角等腰直角三角形的性质和图中相关线段间的和差关系求得BC=4,BE=BCDE=由正切三角函数定义知tanDBC=;(2)过点P作PFx轴于点F由点B、D的坐标得到BDx轴,PBF=DBC,利用(1)中的结果得到:tanPBF=设P(x,x2+3x+4),则利用锐角三角函数定义推知=,通过解方程求得点P的坐标为(,)解答:解:(1)令y=0,则x2+3x+4=(x+1)(x4)=0,解得 x1=1,x2=4A(1,0),B(4,0)当x=3时,y=32+33+4=4,D(3,4)如图,连接CD,过点D作DEBC于点EC(0,4),CDAB,BCD=ABC=45在直角OBC中,OC=OB=4,BC=4在直角CDE中,CD=3CE=ED=,BE=BCDE=tanDBC=;(2)过点P作PFx轴于点FCBF=DBP=45,PBF=DBC,tanPBF=设P(x,x2+3x+4),则=,解得 x1=,x2=4(舍去),P(,)点评:本题主要考查了二次函数综合型题目,其中涉及到了坐标与图形性质,勾股定理,锐角三角函数定义以及二次函数图象上点的坐标特征等知识点解题时,要注意数形结合的数学思想方法4. (2014湖北宜昌,第24题12分)如图,在平面直角坐标系中,已知点P(0,4),点A在线段OP上,点B在x轴正半轴上,且AP=OB=t,0t4,以AB为边在第一象限内作正方形ABCD;过点C、D依次向x轴、y轴作垂线,垂足为M,N,设过O,C两点的抛物线为y=ax2+bx+C(1)填空:AOBDNA或DPABMC(不需证明);用含t的代数式表示A点纵坐标:A(0,4t);(2)求点C的坐标,并用含a,t的代数式表示b;(3)当t=1时,连接OD,若此时抛物线与线段OD只有唯一的公共点O,求a的取值范围;(4)当抛物线开口向上,对称轴是直线x=2,顶点随着的增大向上移动时,求t的取值范围考点:二次函数综合题分析:(1)根据全等三角形的判定定理SAS证得:AOBDNA或DPABMC;根据图中相关线段间的和差关系来求点A的坐标;(2)利用(1)中的全等三角形的对应边相等易推知:OM=OB+BM=t+4t=4,则C(4,t)把点O、C的坐标分别代入抛物线y=ax2+bx+c可以求得b=t4a;(3)利用待定系数法求得直线OD的解析式y=x联立方程组,得,所以ax2+(4a)x=0,解得 x=0或x=4+对于抛物线的开口方向进行分类讨论,即a0和a0两种情况下的a的取值范围;(4)根据抛物线的解析式y=ax2+(4a)x得到顶点坐标是(,(t16a)2)结合已知条件求得a=t2,故顶点坐标为(2,(t)2)哟抛物线的性质知:只与顶点坐标有关,故t的取值范围为:0t解答:解:(1)如图,DNA=AOB=90,NAD=OBA(同角的余角相等)在AOB与DNA中,AOBDNA(SAS)同理DNABMC点P(0,4),AP=t,OA=OPAP=4t故答案是:DNA或DPA;4t;(2)由题意知,NA=OB=t,则OA=4tAOBBMC,CM=OB=t,OM=OB+BM=t+4t=4,C(4,t)又抛物线y=ax2+bx+c过点O、C,解得 b=t4a;(3)当t=1时,抛物线为y=ax2+(4a)x,NA=OB=1,OA=3AOBDNA,DN=OA=3,D(3,4),直线OD为:y=x联立方程组,得,消去y,得ax2+(4a)x=0,解得 x=0或x=4+,所以,抛物线与直线OD总有两个交点讨论:当a0时,4+3,只有交点O,所以a0符合题意;当a0时,若4+3,则a又a0所以 a若4+0,则得a又a0,所以a0综上所述,a的取值范围是a0或a或a0(4)抛物线为y=ax2+(4a)x,则顶点坐标是(,(t16a)2)又对称轴是直线x=+2=2,a=t2,顶点坐标为:(2,(14t)2),即(2,(t)2)抛物线开口向上,且随着t的增大,抛物线的顶点向上移动,只与顶点坐标有关,t的取值范围为:0点评:本题考查了二次函数综合题型此题难度较大,需要熟练掌握待定系数法求二次函数解析式,全等三角形的判定与性质,二次函数图象的性质等知识点,综合性比较强,需要学生对所学知识进行系统的掌握5. (2014湖南衡阳,第28题10分)二次函数y=ax2+bx+c(a0)的图象与x轴的交点为A(3,0)、B(1,0)两点,与y轴交于点C(0,3m)(其中m0),顶点为D(1)求该二次函数的解析式(系数用含m的代数式表示);(2)如图,当m=2时,点P为第三象限内的抛物线上的一个动点,设APC的面积为S,试求出S与点P的横坐标x之间的函数关系式及S的最大值;(3)如图,当m取何值时,以A、D、C为顶点的三角形与BOC相似?考点:二次函数综合题分析:(1)利用交点式求出抛物线的解析式;(2)如答图2,求出S的表达式,再根据二次函数的性质求出最值;(3)ACD与BOC相似,且BOC为直角三角形,所以ACD必为直角三角形本问分多种情形,需要分类讨论,避免漏解解答:解:(1)抛物线与x轴交点为A(3,0)、B(1,0),抛物线解析式为:y=a(x+3)(x1)将点C(0,3m)代入上式,得a3(1)=3m,m=a,抛物线的解析式为:y=m(x+3)(x1)=mx2+2mx3m(2)当m=2时,C(0,6),抛物线解析式为y=2x2+4x6,则P(x,2x2+4x6)设直线AC的解析式为y=kx+b,则有,解得,y=2x6如答图,过点P作PEx轴于点E,交AC于点F,则F(x,2x6)PF=yFyP=(2x6)(2x2+4x6)=2x26xS=SPFA+SPFC=PFAE+PFOE=PFOA=(2x26x)3S=3x29x=3(x+)2+S与x之间的关系式为S=3x29x,当x=时,S有最大值为(3)y=mx2+2mx3m=m(x+1)24m,顶点D坐标为(1,4m)如答图,过点D作DEx轴于点E,则DE=4m,OE=1,AE=OAOE=2;过点D作DFy轴于点F,则DF=1,CF=OFOC=4m3m=m由勾股定理得:AC2=OC2+OA2=9m2+9;CD2=CF2+DF2=m2+1;AD2=DE2+AE2=16m2+4ACD与BOC相似,且BOC为直角三角形,ACD必为直角三角形i)若点A为直角顶点,则AC2+AD2=CD2,即:(9m2+9)+(16m2+4)=m2+1,整理得:m2=,此种情形不存在;ii)若点D为直角顶点,则AD2+CD2=AC2,即:(16m2+4)+(m2+1)=9m2+9,整理得:m2=,m0,m=此时,可求得ACD的三边长为:AD=2,CD=,AC=;BOC的三边长为:OB=1,OC=,BC=两个三角形对应边不成比例,不可能相似,此种情形不存在;iii)若点C为直角顶点,则AC2+CD2=AD2,即:(9m2+9)+(m2+1)=16m2+4,整理得:m2=1,m0,m=1此时,可求得ACD的三边长为:AD=2,CD=,AC=3;BOC的三边长为:OB=1,OC=3,BC=,满足两个三角形相似的条件m=1综上所述,当m=1时,以A、D、C为顶点的三角形与BOC相似点评:本题是二次函数综合题型,考查了函数的图象与性质、待定系数法、相似、勾股定理、图形面积计算等知识点,难度不大第(2)问重点考查了图形面积的计算方法;第(3)问重点考查了分类讨论的数学思想6. (2014湖南永州,第25题10分)如图,抛物线y=ax2+bx+c(a0)与x轴交于A(1,0),B(4,0)两点,与y轴交于点C(0,2),点M(m,n)是抛物线上一动点,位于对称轴的左侧,并且不在坐标轴上,过点M作x轴的平行线交y轴于点Q,交抛物线于另一点E,直线BM交y轴于点F(1)求抛物线的解析式,并写出其顶点坐标;(2)当SMFQ:SMEB=1:3时,求点M的坐标考点:二次函数综合题.专题:压轴题分析:(1)把点A、B、C的坐标代入抛物线解析式得到关于a、b、c的三元一次方程组,然后求解即可,再把函数解析式整理成顶点式形式,然后写出顶点坐标;(2)根据点M的坐标表示出点Q、E的坐标,再设直线BM的解析式为y=kx+b(k0),然后利用待定系数法求出一次函数解析式,再求出点F的坐标,然后求出MQ、FQ、ME,再表示出MFQ和MEB的面积,然后列出方程并根据m的取值范围整理并求解得到m的值,再根据点M在抛物线上求出n的值,然后写出点M的坐标即可解答:解:(1)抛物线y=ax2+bx+c过点A(1,0),B(4,0),C(0,2),解得,y=x2+x+2,y=x2+x+2=(x3x+)+2=(x)2+,顶点坐标为(,);(2)M(m,n),Q(0,n),E(3m,n),设直线BM的解析式为y=kx+b(k0),把B(4,0),M(m,n)代入得,解得,y=x+,令x=0,则y=,点F的坐标为(0,),MQ=|m|,FQ=|n|=|,ME=|3mm|=|32m|,SMFQ=MQFQ=|m|=|,SMEB=ME|n|=|32m|n|,SMFQ:SMEB=1:3,|3=|32m|n|,即|=|32m|,点M(m,n)在对称轴左侧,m,=32m,整理得,m2+11m12=0,解得m1=1,m2=12,当m1=1时,n1=12+1+2=3,当m2=12时,n2=(12)2+(12)+2=88,点M的坐标为(1,3)或(12,88)点评:本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,待定系数法求一次函数解析式,三角形的面积,此题运算较为复杂,用m、n表示出MFQ和MEB的相应的边长,然后根据两个三角形的面积的关系列出方程是解题的关键7. (2014河北,第24题11分)如图,22网格(每个小正方形的边长为1)中有A,B,C,D,E,F,G、H,O九个格点抛物线l的解析式为y=(1)nx2+bx+c(n为整数)(1)n为奇数,且l经过点H(0,1)和C(2,1),求b,c的值,并直接写出哪个格点是该抛物线的顶点;(2)n为偶数,且l经过点A(1,0)和B(2,0),通过计算说明点F(0,2)和H(0,1)是否在该抛物线上;(3)若l经过这九个格点中的三个,直接写出所有满足这样条件的抛物线条数考点:二次函数综合题专题:压轴题分析:(1)根据1的奇数次方等于1,再把点H、C的坐标代入抛物线解析式计算即可求出b、c的值,然后把函数解析式整理成顶点式形式,写出顶点坐标即可;(2)根据1的偶数次方等于1,再把点A、B的坐标代入抛物线解析式计算即可求出b、c的值,从而得到函数解析式,再根据抛物线上点的坐标特征进行判断;(3)分别利用(1)(2)中的结论,将抛物线平移,可以确定抛物线的条数解答:解:(1)n为奇数时,y=x2+bx+c,l经过点H(0,1)和C(2,1),解得,抛物线解析式为y=x2+2x+1,y=(x1)2+2,顶点为格点E(1,2);(2)n为偶数时,y=x2+bx+c,l经过点A(1,0)和B(2,0),解得,抛物线解析式为y=x23x+2,当x=0时,y=2,点F(0,2)在抛物线上,点H(0,1)不在抛物线上;(3)所有满足条件的抛物线共有8条当n为奇数时,由(1)中的抛物线平移又得到3条抛物线,如答图31所示;当n为偶数时,由(2)中的抛物线平移又得到3条抛物线,如答图32所示点评:本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,二次函数图象上点的坐标特征,二次函数的对称性,要注意(3)抛物线有开口向上和开口向下两种情况8、(2014随州,第25题12分)平面直角坐标系中,四边形ABCD是菱形,点C的坐标为(3,4),点A在x轴的正半轴上,O为坐标原点,连接OB,抛物线y=ax2+bx+c经过C、O、A三点(1)直接写出这条抛物线的解析式;(2)如图1,对于所求抛物线对称轴上的一点E,设EBO的面积为S1,菱形ABCD的面积为S2,当S1S2时,求点E的纵坐标n的取值范围;(3)如图2,D(0,)为y轴上一点,连接AD,动点P从点O出发,以个单位/秒的速度沿OB方向运动,1秒后,动点Q从O出发,以2个单位/秒的速度沿折线OAB方向运动,设点P运动时间为t秒(0t6),是否存在实数t,使得以P、Q、B为顶点的三角形与ADO相似?若存在,求出相应的t值;若不存在,请说明理由考点:二次函数综合题分析:(1)求得菱形的边长,则A的坐标可以求得,然后利用待定系数法即可求得函数的解析式;(2)首先求得菱形的面积,即可求得S1的范围,当S1取得最大值时即可求得直线的解析式,则n的值的范围即可求得;(3)分当1t3.5时和3.5t6时两种情况进行讨论,依据相似三角形的对应边的比相等,即可列方程求解解答:解:(1)根据题意得:,解得:,则抛物线的解析式是:y=x2x;(2)设BC与y轴相交于点G,则S2=OGBC=20,S15,又OB所在直线的解析式是y=2x,OB=2,当S1=5时,EBO的OB边上的高是如图1,设平行于OB的直线为y=2x+b,则它与y轴的交点为M(0,b),与抛物线对称轴x=交于点E(,n)过点O作ONME,点N为垂足,若ON=,由MNOOGB,得OM=5,y=2x5,由,解得:y=0,即E的坐标是(,0)与OB平行且到OB的距离是的直线有两条由对称性可得另一条直线的解析式是:y=2x+5则E的坐标是(,10)由题意得得,n的取值范围是:0n10且n5(3)如图2,动点P、Q按题意运动时,当1t3.5时,OP=t,BP=2t,OQ=2(t1),连接QP,当QPOP时,有=,PQ=(t1),若=,则有=,又QPB=DOA=90,BPQAOD,此时,PB=2PQ,即2t=(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论