圆周角教学反思.docx_第1页
圆周角教学反思.docx_第2页
圆周角教学反思.docx_第3页
圆周角教学反思.docx_第4页
圆周角教学反思.docx_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

圆周角教学反思篇一:圆周角教学设计及反思 第一课时 圆周角(一) 教学目标: (1)理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用; (2)培养学生观察、分析、想象、归纳和逻辑推理的能力; (3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法 教学重点:圆周角的概念和圆周角定理 教学难点:理解圆周角定理的证明 教学活动设计:(在教师指导下完成) (一)圆周角的概念 1、复习提问: (1)什么是圆心角? 答:顶点在圆心的角叫圆心角. (2)圆心角的度数定理是什么? 答:圆心角的度数等于它所对弧的度数. 2、引题圆周角: 如果顶点不在圆心而在圆上,则得到如左图的新的角ACB,它就是圆周角.(如右图) (演示图形,提出圆周角的定义) 定义:顶点在圆周上,并且两边都和圆相交的角叫做圆周角 3、概念辨析: 教材P93中1题:判断下列各图形中的是不是圆周角,并说明理由 学生归纳:一个角是圆周角的条件:顶点在圆上;两边都和圆相交. (二)圆周角的定理 1、提出圆周角的度数问题 问题:圆周角的度数与什么有关系? 经过电脑演示图形,让学生观察图形、分析圆周角与圆心角,猜想它们有无关系引导学生在建立关系时注意弧所对的圆周角的三种情况:圆心在圆周角的一边上、圆心在圆周角内部、(1)当圆心在圆周角的一边上时,圆周角与相应的圆心角的关系:(演示图形)观察得知圆心在圆周角上时,圆周角是圆心角的一半. 提出必须用严格的数学方法去证明. (2)其它情况,圆周角与相应圆心角的关系: 当圆心在圆周角外部时(或在圆周角内部时)引导学生作辅助线将问题转化成圆心在圆周角一边上的情况,从而运用前面的结论,得出这时圆周角仍然等于相应的圆心角的结论. 证明:作出过C的直径(略) 圆周角定理: 一条弧所对的 周角等于它所对圆心角的一半. 说明:这个定理的证明我们分成三种情况.这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想.(对A层学生渗透完全归纳法) (三)定理的应用 1、例题: 如图OA、OB、OC都是圆O的半径, AOB=2BOC 求证:ACB=2BAC 让学生自主分析、解得,教师规范推理过程 说明:推理要严密;符号“”应用要严格,教师要讲清 2、巩固练习: (1)如图,已知圆心角AOB=100,求圆周角ACB、ADB的度数? (2)一条弦分圆为1:4两部分,求这弦所对的圆周角的度数? 说明:一条弧所对的圆周角有无数多个,却这条弧所对的圆周角的度数只有一个,但一条弦所对的圆周角的度数只有两个 (四)总结合集二:24.4.1圆周角1教学设计及教学反思 圆周角(1) 课题24.4.1圆周角(1) 设计理念: 新课标认为:直观与推理是“图形与几何”学习中的两个重要方面。几何直观不仅在“图形与几何”的学习中发挥着不可替代的作用,并且贯穿在整个数学学习中。 “数学的学习是学生的主体性、能动性、独立性不断生成、张扬、发展、提升的过程”。 以奥苏伯尔“有意义接受性学习”理论和弗赖登塔尔“再创造”数学教学思想为指导,教师通过创设问题情景,营造民主、和谐的课堂氛围,让学生有充分的从事数学活动的时间和空间。意在使学生经历探索、体验成功,增强学好数学的信心,形成应用意识、创新意识。 教材分析: (一)、教材的地位与作用 本节课是苏科版九上第五章中心对称图形(二)第三节圆周角第一课时。在学习了圆的基本概念和性质以及圆心角概念和性质的基础上,对圆周角性质的探索,圆周角性质在圆的有关说理、作图、计算中有着广泛的应用,在对圆与其他平面图形的研究中起着桥梁和纽带的作用。 (二)、目标分析 (1)知识目标: 1、理解圆周角的概念。 2、经历探索圆周角与它所对的弧的关系的过程,了解并证明圆周角定理及其推论。 3、有机渗透“由特殊到一般”、“分类”、“化归”等数学思想方法。 (2)能力目标: 初步渗透数形结合、分类讨论、类比等的数学思想,并逐步学会用数学的眼光和运动、集合的观点去认识世界、解决问题. (3)情感、态度与价值观的目标: 1、引导学生对图形的观察,发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心. 2、培养学生以严谨求实的态度思考数学。 (三)、教学重点、难点 探索并证明圆周角与它所对的弧的关系是本节课的重点, 篇三:圆周角和圆心角的关系教学反思 圆周角和圆心角的关系教学反思 反思一:圆周角和圆心角的关系教学反思 把射门游戏问题抽象为数学问题,研究圆周角和圆心角的关系,研究圆周角和圆心角的关系,应该说,学生解决这一问题是有一定难度的,尽管如此,教学时仍应给学生留有时间和空间,让他们进行思考。让学生经历观察、想象、推理、操作、描述、交流等过程,多种角度直观体验数学模型,而这也正符合本章学习的主要目标。 反思二:圆周角和圆心角的关系教学反思 在本节课的教学中,我结合本节课教学内容、教学目标和学生的认知规律,在教学设计上,一是注重创设情境,激发学生学习的兴趣、主动性和求知欲望, 为下一步教学的顺利展开开个好头;二是注重引导学生经历探索、验证、论证、应用数学新知的过程,鼓励学生用动手实践、自主探究、合作交流的学习方法进行学 习,使学生在数学活动中深刻的理解知识和掌握由特殊到一般的认知方法。 反思三:圆周角和圆心角的关系教学反思 本节课我认为是一节研究性的课,结论虽然简单、易用,但是探索的过程中体现了数学的分类思想与化归思想。如何让学生自然地理解是这节课的难点。最开始,我是计划通过学生动手作圆周角来体会分类,但是考虑到时间的关系,没有让学生动手,尽管在后面对分类思想在本节课的应用进行了充分的讲解,但是对于学生自主探究还是有些欠缺,使学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论