




免费预览已结束,剩余4页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
标准实用函数习题课(I) 函数定义域和值域的求法1、 求函数定义域的方法 (一) 直接法求定义域 关注一些特殊函数的定义域或关注一些特殊的取值,从而使得函数有意义,直接限制自变量的取值范围。 一般需要关注的解题要点:(1)分母不为零 (2)偶次根式的被开方数非负。(3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx中xk+/2;y=cotx中xk等等。( 6 )中x例1 求下列函数定义域 (2) 解题时要关注定义域 函数的三要素是定义域,值域和对应关系。其中定义域是规定函数自变量取值范围的关键,是题目限制条件的体现。由于常常被忽略,因此是命题人常将隐含条件设计于其中。若想正确地解决函数相关问题,必须在解题时关注定义域,把它明确地写出来。例2 已知函数,求函数的最大值。例3 求函数 的单调增区间。(3) 有关抽象函数的定义域问题 抽象函数的自变量始终是x(或其他字母),但是由于对应法则所作用的x形式不同(如x+2,x2 等),于是就有了有关抽象函数的定义域问题。解决抽象函数的定义域问题需要紧紧抓住一点:括号里面的所有代数式的取值范围是相同的。例4 已知函数的定义域为0,2,求的定义域。例5 已知函数的定义域为(-1,5,求的定义域。例6 已知函数的定义域为0,2,求的定义域。2、 求函数值域的方法(1) 层层分析法(直接法) 这种方法适合值域明显的复合函数或多个值域明显的函数相加减得到的函数求值域。在分析的题目中常常以分式为背景,当遇到分式上下都有自变量x的时候,要注意分离常数法的例7 求函数的值域。例8 求函数 的值域例9 求函数的值域例10 求函数的值域(2) 换元法 常用来处理含根式的函数求值域。分以下几种情况:1. 出现单根式时用代数换元 例11 求函数的值域 例12 求函数的值域2. 出现平方和为定值(常有双根式)时用三角换元 例13 求函数的值域 例14 求函数的值域3. 出现指数或高次函数有时也用换元法 另例 求函数 的值域(3) 几何意义法 利用函数的几何意义将函数转化成距离的和或差从而利用数形结合的方法处理函数的值域。常用来解决含绝对值函数,含根式的函数的值域问题。1. 出现绝对值时转化成数轴上两点的和与差 例15 求函数的值域2. 出现双根式时考虑两点间距离 例16 求函数的值域 例17 求函数的值域3. 出现绝对值时也可以考虑转化为点到直线距离 例18 求函数的值域4. 出现分式时可以考虑转化为斜率 例19 求函数的值域函数习题课(II)函数解析式的求法,分段函数1、 函数解析式的求法 (一)待定系数法 若题目中已经明确给出了函数的形式(如一次函数、二次函数、指数函数等)可以利用待定系数法现将函数解析式设出,再利用题目已经给出的关系进行带入化简,通过对比系数进行对于函数解析式的确定。 例1 已知一次函数,且,求解析式 (二)拼凑换元法 已知复合函数的解析式时,通过在已知的解析式中拼凑出或通过换元法对解析式进行处理后得到解析式。重要的是不能忽略拼凑或换元前后定义域的变化。 例2 已知,求的解析式 例3 已知,求的解析式 (三)方程组法求解析式 同时出现等有关的函数解析式时,常用列方程组的方法来求解析式。 例4 设为偶函数,为奇函数,且,试求,的解析式 (四)抽象函数求解析式 解决抽象函数问题的一种最常用的方法就是赋值法。当抽象函数相关的题目中先给出了某一函数值,后续的解题过程中必然会用到赋值法,从而简便运算。 例5 已知,对于任意实数,等式恒成立,求 例6 设是定义在上的函数,且满足。对任意自然数都有等式成立,求2、 分段函数问题 在给出了分段函数解析式的问题中,主要有三类问题:一是求函数值,特别是求复合函数的值,其方法是当自变量在不同的区间段上时,带入不同的解析式;二是研究这个分段函数的单调性,方法是根据函数在各个区间段上的单调性,整合为整个定义域上的单调性;三是求最值,其方法是求出函数在各个区间段上的最值,这些最值中最大的是分段函数的最大值,最小的是分段函数的最小值。分段函数的易错点在于各定义域分界点处函数值的大小。此外,分段函数常用数形结合法分析。 例7 已知函数,求方程的实根个数 例8 已知函数,求的值 例9 设函数,若,则关于x的方程的解的个数为 例10 已知函数 (1)求的值域 (2)设函数,若对于任意,总存在,使得成立,求实数的取值范围函数习题课(III)函数的单调性和最值1、 函数的单调性 (一)证明函数的单调性 必修一当中对于函数单调性的证明仅限于用定义证明,因此难度不是太大,经常在单调性的证明过程中考察指对数运算,新定义的学习能力等。破解方法即熟练掌握证明方法,并仔细审题,通过题目给出的条件进行运算,拼凑定义。 常用的几种处理方法:因式分解,通分,分子有理化,配方,构造(抽象函数) 例1 证明函数在区间上单调递增 例2 求函数在区间上的单调性 例3 求函数在区间上的单调性 例4 证明函数在上为增函数 例5 对任意,函数都有,且当 求证:在上为增函数 (二)利用函数的单调性解决问题 1.利用函数的单调性识图 在选择题中常出现一些需要选择函数图像的题目,这时利用单调性进行排除就是一种很好的方法。此类识图题目有几个关注点:定义域,端点值,特殊值,单调性。 例6 函数的图象大致是 2.利用函数的单调性比较大小 在选择题中也常出现一些比较函数值大小的题目,这类题常利用函数在一些区间上的单调性来解决。但题目往往不会仅用函数的单调性便可以解决,常常需要结合函数的其他性质(如奇偶性,周期性等)将自变量转换到同一个单调区间中后,再进行比较。 例7 定义在R上的偶函数满足:对任意的,有,则当时,求的大小关系 例8 已知函数在上单调递增,试比较的大小关系 例9 定义在R上的奇函数,满足,且在区间上是增函数,试比较的大小关系 3.利用函数的单调性解函数不等式 此类题目涉及的函数一般在题目中都会通过一些条件加以限制,从而使它在需要进行求解的范围内是单调的。因此解决此类题目只需要将单调性正确解出,再比较需要比较的两个自变量的大小关系即可。 例10 若偶函数在上单调递减,求不等式的解集 例11 解不等式2、 函数的最值 函数的最值作为函数在特定区间上的一个基本特征,在理解上没有难点,因此在命题上也很少单独考察,一般题目常以求最值为最终命题要求,实际考察函数的单调性,奇偶性和周期性等性质。 【方法技巧】求函数最值的方法:(1)利用已知函数的性质求函数的最值:如二次函数;(2)利用图象数形结合求函数的最值;(3)利用函数的单调性求函数的最值,这种情况下的函数一般为连续函数,且求最值时给出的单调区间常为闭区间(暗示端点值可能为最值) 例12 已知函数的最大值为M,最小值为m,求的值 例13 求函数的最大值 例14 如果函数对任意的实数x,都有,且当时,那么求函数在上的最大值与最小值之和。 Tip: 由于奇函数具有关于原点对称的性质,因此常常有最值的奇函数,会出现在求最大值和最小值之和的题目中,此时最大值和最小值之和为0. 因此题目问最大值和最小值之和时,要注意函数的奇偶性,也许可以使运算更加简便。函数习题课(IV)函数的奇偶性,周期性 这一部分应该是函数题目中的重头戏。涉及到函数题目中的创新性题目,由于奇偶性和周期性可以利用抽象函数表示,且表示的形式非常多样,奇偶性和周期性特别受到命题人的青睐。破解奇偶性和周期性相关题目的方法只有一个:熟练掌握相关的抽象性质,利用数形结合法画出函数图像解题。 一、函数的奇偶性【知识储备】1.偶函数在定义域上必有,奇函数在定义域上必有。 2.上面两式还有等价形式:(1)偶函数,奇函数 (2)偶函数,奇函数,前两式均有 3.判断函数奇偶性的步骤:(1)判断定义域,具有奇偶性的函数的定义域一定关于原点对称。若某函数的定义域就不关于原点对称,那么此函数一定不具备奇偶性。(2)根据定义式判断函数的特征,注意一定要两个式子都进行验证,因为存在既奇又偶函数,也存在非奇非偶函数。 4.函数奇偶性的相关结论:(1)偶函数的和,差,商,积仍为偶函数;奇函数的和,差仍为奇函数,但商,积为偶函数。奇函数和偶函数的商,积为奇函数。 (2)函数与,具有相同的奇偶性 (3)*复合函数的奇偶性判断:内偶则偶,内奇同外。题型示例:1.判断函数的奇偶性 这类题目一般使用定义法判断函数的奇偶性,但是需要特别注意既奇又偶函数。 例1 定义两种运算:,判断函数的奇偶性 例2 设为有理数集,函数,,函数的奇偶性 例3 若是R上周期为5的奇函数,且满足,求的值 例4 函数的定义域为R,且满足:是偶函数,是奇函数,若,求的值 例5 已知函数在(-1,1)上有定义,当且仅当时,0,且对任意都有,试证明: (1)为奇函数; (2)在定义域上单调递减 二、函数的周期性 【知识储备】1.如果存在非零常数T使得对函数定义域内的任意x,都有,则函数称为周期函数,是其一个周期。 2. 关于函数周期性的一些变形结论: (1) 若满足,则函数为周期函数,且 (2) 若满足,则函数为周期函数,且 (3) 若满足,则函数为周期函数,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 计算机组成原理实验指导书
- 山东省淄博市周村区(五四制)2024-2025学年八年级下学期期中考试数学试题(含部分答案)
- 江苏省徐州市2024-2025学年七年级下学期期中道德与法治试题(含答案)
- 财务会计实习感悟5篇
- 幼儿英语教学26个英文字母课件
- 幼儿园班级管理课件
- 2025年福建省中考道德与法治试卷真题(含标准答案)
- 2024-2025学年下学期高一生物人教版期末必刷常考题之基因表达与性状的关系
- 部编版一年级下册识字(二)《操场上》教案
- 建筑施工特种作业-建筑焊工真题库-4
- 形象店加盟管理方案
- 1.《郑人买履》课件PPT
- T∕ZS 0128-2020 既有建筑结构安全智慧监测技术规程
- 发电机定子绕组泄漏电流和直流耐压试验作业指导书
- 冀教版小学美术六年级下册教案
- 甘肃省生态功能区划
- DB22∕T 1073-2011 绿色淫羊藿生产技术规程
- 教练技术LP三阶段教练手册
- 国家开放大学《人文英语3》章节测试参考答案
- 小柳树和小枣树(1)
- 钻孔灌注桩超灌混凝土管理办法
评论
0/150
提交评论