




已阅读5页,还剩43页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2020 3 14 1 一 源量电荷 一种带电粒子的统称 能负荷电的一种物质 体电荷密度 电荷体密度 1 1 1 表面电荷密度 忽略厚度 1 1 2 线电荷密度 不考虑线径 1 1 3 第一章麦克斯伟方程 第1章麦克斯韦方程 1 1基本电磁量 源量 场量 2020 3 14 2 第一章麦克斯伟方程 图1 1电荷三种密度的示意图 2 电流 电荷的流动 或场的变化 电流定义 电荷的宏观定向运动电流方向 正电荷宏观运动方向 静电的产生与电荷的关系 飞机特制接地轮胎 油罐车接地铁链 1 1 5 2020 3 14 3 2020 3 14 4 第一章麦克斯伟方程 电流的分类 传导电流 在电导率为 的导电媒质中 如果存在电场作用 自由电子将发生定向运动形成电流 这种电流称为传导电流 1 1 11 电导率 的单位是电阻率单位 m 的倒数 叫做每米西门子 通常用符号记做 S m 运流电流 气态媒质 真空器件中的电流 不遵从欧姆定律和焦耳定律 在气体或真空中 在电场的作用下自由电荷将发生定向运动形成电流 这种电流称为运流电流 它由自由电荷密度 和电荷的平均运动速度来确定 真空电子管中由阴极发射到阳极的电子流 1 1 12 1 1 11 电导率 的单位是电阻率单位 m 的倒数 叫做每米西门子 通常用符号记做 S m 运流电流 气态媒质 真空器件中的电流 不遵从欧姆定律和焦耳定律 在气体或真空中 在电场的作用下自由电荷将发生定向运动形成电流 这种电流称为运流电流 它由自由电荷密度 和电荷的平均运动速度来确定 真空电子管中由阴极发射到阳极的电子流 1 1 11 1 1 11 2020 3 14 5 1867年德国的韦纳 西门子发现用电磁铁代替永久磁铁 同样可以发电 西门子兄弟四人都是出色的发明家 韦纳在柏林被称为 柏林的西门子 而威廉在英国被称为 伦敦的西门子 弗里德里希是 德累斯顿的西门子 而小弟卡则是 俄罗斯的西门子 2020 3 14 6 第一台电子管计算机 ENIAC 占地170平方米 重30吨 有1 8万个电子管 用十进制计算 每秒运算5000次 第一台电子管计算机 ENIAC 占地170平方米 重30吨 有1 8万个电子管 用十进制计算 每秒运算5000次 2020 3 14 7 真空管具有抗辐射能力强 抗宇宙射线 线性放大区域宽等特点 在航空航天领域 高保真音响等方面还有应用 2020 3 14 8 电流密度矢量 趋肤效应 第一章麦克斯伟方程 体电流密度矢量 表面电流密度矢量 位移电流 是为说明变化的电场能产生磁场而引入的 电容的隔直流通交流特性 1 1 6 1 1 7 1 1 8 两种电流密度的关系 1 1 10 2020 3 14 9 第一章麦克斯伟方程 特别注意 体电流密度是垂直通过单位横截面的电流 因此它的单位是每平方米安培 A m2 而不是每立方米安培 A m3 在一个厚度可以忽略的薄层内所形成的电流称为表面电流 表面电流密度矢量单位是每米安培 A m 而不是每平方米安培 A m2 图1 2 体 电流密度矢量模型 图1 3表面电流模型 2020 3 14 10 位移电流与传导电流两者相比 唯一共同点仅在于都可以在空间激发磁场 但二者本质是不同的 1 位移电流的本质是变化着的电场 而传导电流则是自由电荷的定向运动 2 传导电流在通过导体时会产生焦耳热 而位移电流则不会产生焦耳热 3 位移电流也即变化着的电场可以存在于真空 导体 电介质中 而传导电流只能存在于导体中 2020 3 14 11 第一章麦克斯伟方程 3 电流连续方程 反映电荷与电流的关系 重要 根据电荷守恒定律 有 这是电流连续性方程的积分形式 1 1 15 二 场和场量 如果某个物理量是空间位置的函数 这个空间就确定了该物理量的一个场 如果空间位置的函数是矢量 相应的场就是矢量场 如果空间位置的函数是标量 相应的场就是标量场 例如电场是矢量场 电位是标量场 2020 3 14 12 第一章麦克斯伟方程 1 电场强度矢量 库仑定律 由此可得静电场电场强度矢量 单位正电荷受的电场力 1 1 16 真空的介电常数 2 电位移矢量 2020 3 14 13 E在电介质中的变化介质在外加电场时会产生感应电荷而削弱电场 原外加电场 真空中 与最终介质中电场比值即为介电常数 又称诱电率 如果有高介电常数的材料放在电场中 场的强度会在电介质内有可观的下降 2020 3 14 14 第一章麦克斯伟方程 极性分子 整体是中性 但分子正 负电荷中心不重合 即使无外加电场 就具有偶极矩 称为固有电偶极矩 非极性分子 正 负电荷中心重合 无外加电场时 偶极矩为零 当有外加电场时 正 负电荷中心被拉开 获得偶极矩 称为感应电偶极矩 介质的极化 介质在外加电场的作用下 出现了电偶极矩 为了描述介质的极化状态 引入电极化强度矢量 1 1 19 电介质中的分子可分为极性分子与非极性分子 电介质 即绝缘体 2020 3 14 15 第一章麦克斯伟方程 在各向同性电介质中 电极化强度矢量与电场强度矢量成正比 1 1 20 图1 4均匀电场中的介质板 称为电介质的相对介电常数 束缚电荷 在均匀外加电场中 介质内部相邻偶极矩的正负电荷互相抵消 结果在介质表面产生正电荷层或负电荷层 出现在表面的电荷称为束缚电荷或极化电荷 如图1 4所示 介质受电场的作用产生束缚电荷 束缚电荷反过来也要影响电场的分布 总电场为自由电荷与束缚电荷产生电场的之和 为讨论介质中电场和介质中高斯定理 引进电位移矢量 1 1 21 2020 3 14 16 介电常数决定了电信号在该介质中传播的速度 电信号传播的速度与介电常数平方根成反比 介电常数越低 信号传送速度越快 我们作个形象的比喻 就好想你在海滩上跑步 水深淹没了你的脚踝 水的粘度就是介电常数 水越粘 代表介电常数越高 你跑的也越慢 PCB板 FR 4 4 5相对介电常数 r可以用静电场用如下方式测量 首先在其两块极板之间为空气的时候测试电容器的电容C0 然后 用同样的电容极板间距离但在极板间加入电介质后侧得电容Cx 然后相对介电常数可以用下式计算 r Cx C0 2020 3 14 17 固有磁矩 分子中电子绕原子核旋转和电子自旋会产生电子磁矩 分子中所有电子磁矩的总和为固有磁矩 磁偶极矩 为电流环的面积矢量 I为电流环上电流 第一章麦克斯伟方程 3 磁感应强度矢量B 高斯计 计算公式 毕奥 萨伐尔定律 单位 1特斯拉 T 1韦伯 米2 Wb m2 104高斯 4 磁场强度矢量磁介质 讨论媒质与磁场相互作用时 称媒质为磁介质 磁偶极子 任意形状的小电流环 洛伦磁力 1 1 22 2020 3 14 18 咖啡炉1mG电饭锅40mG传真机2mG复印机40mG电熨斗3mG吹风机70mG录像机6mG手机100mGVCD10mG电脑100mG音响20mG电须刀100mG电冰箱20mG电热毯100mG空调20mG吸尘器200mG电视机20mG无绳电话200mG洗衣机30mG微波炉200mG 2020 3 14 19 磁化 外磁场使分子内电子运动状态发生变化导致分子磁矩发生变化的现象 磁化强度 无外加磁场时 磁介质在总体上不产生磁场 但被磁化以后 各个分子的磁矩的矢量和不再是零 单位体积内分子磁矩的矢量和称为磁介质的磁化强度 第一章麦克斯伟方程 1 1 23 在各向同性磁介质中 磁化强度与磁感应强度成正比 为了分析问题方便 引入磁场强度 真空的磁导率 其中是相对磁导率 所以 1 1 25 1 1 28 2020 3 14 20 磁环 2020 3 14 21 第一章麦克斯伟方程 5 矢量场的通量和环量通量的定义 矢量场沿有向曲面S的曲面积分 即 例如有磁通量 B 电通量 E 磁场强度通量 H和电位移通量 D 通常把磁通量记为 环量的定义 矢量场沿有向闭合曲线的线积分 即 1 1 29 1 1 30 环量 A 0 矢量场为无旋场 环量 A 0 矢量场为有旋场 例如 安培环路定理 1 1 31 2020 3 14 22 第一章麦克斯伟方程 1 2麦克斯韦方程组的积分形式 2020 3 14 23 物理意义 2020 3 14 24 第一章麦克斯伟方程 JamesClerkMaxwell 1831 1879 麦克斯韦电磁场理论是19世纪物理学中最伟大的成就 它的地位相当于牛顿定律 没有它 现在的通信广播无从谈起 将教材中 1 2 1 式麦克斯韦方程 必须牢牢记住 可改写为 1 2 1 2020 3 14 25 S q 看式1 2 1第一式 2020 3 14 26 第一章麦克斯伟方程 讨论上面第一式是推广的法拉第电磁感应定律 所谓推广就是该定律可用于任何媒质 该式表明时变磁场可以产生电场这一重要事实 第二式是修正的安培环路定律 所谓修正是指添加了位移电流 该式表明电流和时变电场可产生磁场 前两个式子是麦克斯韦方程的核心 说明时变电场和时变磁场互相激发 形成电磁波 麦克斯韦导出了波动方程 表明电磁波的传播速度与已测出的光速是一样的 他推断光是一种电磁波 并预言存在与可见光不同的其它电磁波 1887年德国物理学家赫兹 Hertz 的实验证实了这一预见 根据这预见马可尼 Marconi 意大利 在1895年和波波夫 A C Popov 俄罗斯 在1896年成功地进行了无线电报传送实验 2020 3 14 27 第一章麦克斯伟方程 第3式是电场的高斯定理 对时变电荷与静止电荷都成立 该式表明电场是有源的场 第四式表明磁通的连续性 磁力线没有起点也没有终点 或者说空间不存在磁荷 例1 2 1电源u t U0sin t 接在平板电容器C的两端 见图1 2 2 1 证电容器C中的位移电流ID与导线中的传导电流I相等 2 求导线MN周围的磁场强度H 忽略其它导线的影响 解 1 导线中的传导电流为 极板面积为A 极板间距为d 介电常数为 为的电容器的容量为 2020 3 14 28 第一章麦克斯伟方程 电容器中的电场E u d 电位移矢量强度和位移电流分别为 2 在与导线垂直的平面上 以导线中心为圆心取一个半径为r的圆形的平面 平面上的磁力线都是同心圆 在这个环面的周界L上磁场处处相等 因此有 电容器极板外的磁场强度为 2020 3 14 29 第一章麦克斯伟方程 例1 2 2已知某良导体的电导率为 107S m 相对介电常数 r 1 0 如果导体中的电场为E E0cos t 试求位移电流密度的振幅值JD与传导电流密度的振幅值J之比 解 由已知条件可求得位移电流 传导电流分别为 可以看出 导体中位移电流超前于传导电流90 相角 在良导体内的位移电流远远小于传导电流 2020 3 14 30 第一章麦克斯伟方程 1 3麦克斯韦方程组的微分形式 哈米尔顿算子可视为矢量 表示为 推导散度公式 高斯公式 积分形式的麦克斯韦方程组表示某一范围内的电磁场量的之间的相互关系 微分形式的麦克斯韦方程组则表示某一点的电磁场量之间的相互关系 2020 3 14 31 第一章麦克斯伟方程 在一个包含点的封闭面上的通量为 由此可得通量体密度 点的散度 趋于的通量体密度极限 记为 2020 3 14 32 第一章麦克斯伟方程 散度的物理解释 矢量场中单位体积所发散出来的矢量通量 显然有 推导旋度公式 斯托克斯公式 在围绕着点的小闭合回路上的环量为 2020 3 14 33 第一章麦克斯伟方程 最后一步由积分中值定理得到 是闭合回路包围的面积 M是内的某一点 为法向单位矢量 由此得环量面密度 2020 3 14 34 第一章麦克斯伟方程 当趋于M0时 表示M0处与方向垂直的单位面积上的环量值 方向为该矢量环量面密度最大的方向 模为该矢量最大环量面密度的值 显然 这个物理量就是 它就是矢量在点的旋度 记为 显然有 根据以上推导 可将麦克斯韦方程积分形式改为微分形式 分析与的关系 可得旋度定义 矢量旋度的定义 2020 3 14 35 第一章麦克斯伟方程 物理意义 略 2020 3 14 36 说明 麦克斯韦方程组4个方程式中 两个旋度方程可以认为是独立的 而两个散度方程不是独立的 它们分别可以由相应的旋度方程导出来 在推导中应用条件 请自行验证 推导时均采用微分形式 由第一式可以推出第四式 由第二式 再代入电流连续性方程 可以推出第三式 另外 电流连续性方程也可以由麦克思伟方程组推出 第一章麦克斯伟方程 推导电流连续性方程的微分形式 电流连续性方程的积分形式 根据高斯公式 有 由此可得电流连续性方程的微分形式 2020 3 14 37 第一章麦克斯伟方程 1 4物质的电磁特性 本构方程 描述媒质特有规律 取决于考察点邻域内媒质性质 电磁场的本构方程 麦克斯韦方程组中有4个矢量 相当于12个标量 而麦克斯韦方程组只有两个独立方程 仅能分解成六个标量方程 而加上本构方程后 就可以达到12个方程 这样就可解出12个标量 理想介质 的媒质 理想导体 的媒质 导电媒质 介于0和 之间的媒质 媒质参数主要是指 各种媒质的定义如下 2020 3 14 38 第一章麦克斯伟方程 线性 Linear 媒质 媒质参数与场强的大小无关 否则称为非线性媒质 各向同性 Isotropic 媒质 媒质参数与场强的方向无关 否则称为各向异性媒质 均匀 Homogeneous 媒质 媒质参数与位置无关 否则称为非均匀媒质 色散 Dispersive 媒质 媒质参数与场强频率有关 否则称为非色散媒质 简单媒质 线性 均匀 各向同性的媒质 2020 3 14 39 第一章麦克斯伟方程 一 真空中的本构方程真空中磁导率和介电常数是常数 有 二 各向同性介质中的本构方程 各向同性介质 在给定空间 所考察点邻域之内 各个方向上的物质的电磁特性均相同 2020 3 14 40 第一章麦克斯伟方程 三 各向异性介质中的本构方程电位移矢量的任何一个坐标分量不仅与电场强度矢量相应的坐标分量有关 而且还与其他两个坐标分量有关 磁感应强度矢量的任何一个坐标分量不仅与磁场强度矢量相应的坐标分量有关 而且还与其他两个坐标分量有关 各向异性介质的介电常数 不再是一个数值 磁导率 也不再是一个数值 它们都成了用矩阵表示的张量 2020 3 14 41 第一章麦克斯伟方程 1 5电磁场的边界条件 重点 一 边界条件的概念边界条件 场矢量越过不同媒质的分界面时所满足的方程 表示由介质2指向介质1的分界面法向单位矢量 在理想导体内 电场和磁场都为0 2020 3 14 42 第一章麦克斯伟方程 二 法向分量的边界条件1 电位移矢量的法向分量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 七台河市人民医院妇科内镜手术并发症处理应急考核
- 齐齐哈尔市中医院护士满意度管理考核
- 朔州市中医院药学带教资格考核
- 白城市人民医院腹直肌肌皮瓣乳房重建技术考核
- 2025年中国石墨及碳素制品制造项目创业计划书
- 晋城市中医院科室发展战略规划能力考核
- 鄂尔多斯市人民医院意识障碍患者护理考核
- 鄂尔多斯市人民医院血管外科急救护理考核
- 以课标厘清教考关系及其教学实现
- 中国镀钛项目商业计划书
- 发电机的工作原理
- AI一体化智慧校园建设方案中学版
- 《机电一体化技术》课件-第七章 机电一体化系统设计
- DB51T 692-2018 中小学实验室设备技术规范
- 2024电气安全事故案例
- 期末高频易错测评卷 (试题)-2024-2025学年五年级上册人教版数学
- 工程审计报告(共5篇)
- 物业服务品质控制培训
- 消除“艾梅乙”医疗歧视-从我做起
- DB34∕T 4433-2023 检测实验室公正性风险评估技术规范
- 系统商用密码应用方案v5-2024(新模版)
评论
0/150
提交评论