




免费预览已结束,剩余106页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Ch6TheStabilityofLinearFeedbackSystems TheconceptofstabilityTheRouth HurwitzstabilitycriterionTherelativestability 6 1Theconceptofstability Astablesystemisadynamicsystemwithaboundedoutputtoaboundedinput BIBO Theissueofensuringthestabilityofaclosed loopfeedbacksystemiscentraltocontrolsystemdesign Anunstableclosed loopsystemisgenerallyofnopracticalvalue absolutestability relativestability Absolutestability Wecansaythataclosed loopfeedbacksystemiseitherstableoritisnotstable Thistypeofstable notstablecharacterizationisreferredtoasabsolutestability Relativestability Giventhataclosed loopsystemisstable wecanfurthercharacterizethedegreeofstability Thisisreferredtoasrelativestability 6 2TheRouth Hurwitzstabilitycriterion where Anecessaryandsufficientconditionforafeedbacksystemtobestableisthatallthepolesofthesystemtransferfunctionhavenegativerealparts Anecessarycondition Allthecoefficientsofthepolynomialmusthavethesamesignandbenonzeroifalltherootsareinleft handplane LHP Thecharacteristicequationiswrittenas HurwitzandRouthpublishedindependentlyamethodofinvestigatingthestabilityofalinearsystem Thenumberofrootsofq s withpositiverealpartsisequaltothenumberofchangesinsignofthefirstcolumnoftheRoutharray Routh Hurwitzstabilitycriterion CASE1Noelementinthefirstcolumniszero CASE2Zerointhefirstcolumnwhilesomeotherelementsofrowcontainingazerointhefirstcolumnarenonzero CASE3Zerosinthefirstcolumn andotherelementsoftherowcontainingthezeroarealsozero Considerthecharacteristicpolynomial TheRoutharrayis Case3 Considerthecharacteristicpolynomial TheRoutharrayis Theauxiliarypolynomial Designexample weldingcontrol 6 3Therelativestability Therelativestabilityofasystemcanbedefinedasthepropertythatismeasuredbytherelativerealpartofeachrootorpairofroots Axisshiftandexamples Considercontrolsystem DeterminetherangeofKsatisfyingthestabilityandallpoles 1 TheRoutharrayis TheRoutharrayis Let weobtain Designexample Trackedvehicleturningcontrol Summary Inthischapter wehaveconsideredtheconceptofthestabilityofafeedbackcontrolsystem Adefinitionofastablesystemintermsofaboundedsystemresponsewasoutlinedandrelatedtothelocationofthepolesofthesystemtransferfunctioninthes plane TheRouth Hurwitzstabilitycriterionwasintroduced andseveralexampleswereconsidered Therelativestabilityofafeedbackcontrolsystemwastransferfunctioninthes plane Assignment E6 1E6 4E6 5E6 8 Ch7TheRootLocusMethod Maincontent TheRootLocusConceptTheRootLocusProcedureParameterDesignbytheRootLocusmethodSensitivityandtheRootLocusThree term PID ControllersTheRootLocususingMATLAB 7 1TheRootLocusConcept Theresponseofaclosed loopfeedbacksystemcanbeadjustedtoachievethedesiredperformancebyjudiciousselectionofoneormoreparameters Thelocusofrootsinthes planecanbedeterminedbyagraphicalmethod TherootlocusmethodwasintroducedbyEvansin1984andhasbeendevelopedandutilizedextensivelyincontrolengineeringpractice Therootlocusisthepathoftherootsofthecharacteristicequationtracedoutinthes planeasasystemparameterischanged Closed loopcontrolsystemwithavariableparameterK unityfeedbackcontrolsystem thegainKisavariableparameter 7 2TheRootLocusProcedure Step1 Writethecharacteristicequationas1 F s 0Andrearrangetheequation Ifnecessary sothatthepolynomialintheformpolesandzerosfollows 1 KP s 0Step2FactorP s ifnecessary andwritethepolynomialintheformofpolesandzerosasfollows Step3Locatethepolesandzerosonthes planewithselectedsymbols Thelocusoftherootsofthecharacteristicequation1 KP s 0beginsatthepolesofp s andendsatthezerosofp s asKincreasesfrom0toinfinity withnpolesandMzerosandn M Step4Therootlocusontherealaxisalwaysliesinasectionoftherealaxistotheleftofanoddnumberofpolesandzeros Step5Determinethenumberofseparateloci SL thenumberofseparatelociisequaltothenumberofpoles Example7 1Second ordersystem Step6Therootlocimustbesymmetricalwithrespecttothehorizontalrealaxiswithangles Step7Therootlociproceedtothezerosatinfinityalongasymptotescenteredatandwithangles TheselinearasymptotesarecenteredatapointontherealaxisgivenbyTheangleoftheasymptoteswithrespecttotherealaxisis Example7 2Fourth ordersystem Step8Determinethepointatwhichthelocuscrossestheimaginaryaxis ifitdoesso usingtheRouth Hurwitzcriterion TheactualpointatwhichtherootlocuscrossestheimaginaryaxisisreadilyevaluatedbyutilizingtheRouth HurwitzCriterion Step9Determinethebreakawaypointontherealaxis ifany LetorStep10TheangleoflocusdeparturefromapoleisTheangleoflocusarrivalfromazerois Step11Determinetherootlocationsthatsatisfythephasecriterionatroot Thephasecriterionisq 1 2 Step12Determinetheparametervalueataspecificrootusingthemagnituderequirement Themagnituderequirementatis Example7 4Fourth ordersystem 7 3ParameterDesignbytheRootLocusmethod Thismethodofparameterdesignusestherootlocusapproachtoselectthevaluesoftheparameters Theeffectofthecoefficienta1maybeascertainedfromtherootlocusequation 7 4SensitivityandtheRootLocus TherootsensitivityofasystemT s canbedefinedas thesensitivityofasystemperformancetospecificparameterchanges wehave 7 5Three term PID Controllers Thecontrollerprovidesaproportionalterm anintegrationterm andaderivativeterm Summary Inthischapter wehaveinvestigatedthemovementofthecharacteristicrootsonthes planeasthesystemparametersarevariedbyutilizingtherootlocusmethod Therootlocusmethod agraphicaltechnique canbeusedtoobtainanapproximatesketchinordertoanalyzetheinitialdesignofasystemanddeterminesuitablealterationsofthesystemstructureandtheparametervalues Furthermore weextendedtherootlocusmethodforthedesignofseveralparametersforaclosed loopcontrolsystem Thenthesensitivityofthecharacteristicrootswasinvestigatedforundesiredparametervariationsbydefiningarootsensitivitymeasure Assignment E7 4E7 8 Ch8FrequencyResponseMethods BasicconceptoffrequencyresponseFrequencyresponseplotsDrawingtheBodediagramPerformancespecificationinthefrequencydomain 8 1Basicconceptoffrequencyresponse Thefrequencyresponseofasystemisdefinedasthesteady stateresponseofthesystemtoasinusoidalinputsignal Theresultingoutputsignalforalinearsystem isalsoasinusoidalinthesteadystate itdiffersfromtheinputwaveformonlyinamplitudeandphaseangle Letinput TheLaplacetransformation Theoutput undeterminedcoefficient iscomplexvector FrequencyCharacteristics TransferfunctionandLaplacetransformFrequencycharacteristicsandFouriertransform Frequencycharacteristic Transferfunctionanddifferentialequationareequivalentinrepresentationofsystem FrequencycharacteristicandTransferfunction Computationoffrequencyresponse 8 2Frequencyresponseplots PolarplotBodediagramNicholschartFrequencyresponseplotsoftypicalelements frequencyresponseofanRCfilter Theprimaryadvantageofthelogarithmicplotistheconversionofmultiplicativefactorintoadditivebyvirtueofthedefinitionoflogarithmicgain BodediagramofanRCfilter Nicholschart 0o 180o 180o w 0 20dB 20dB Frequencyresponseplotsoftypicalelements GainPoleatoriginZeroatorigin Poleontherealaxis jwT 1 Zeroontherealaxis jwT 1 TwocomplexpolesTwocomplexzeros Bodediagramofatwin Tnetwork 8 3DrawingtheBodediagram DrawingBodediagram 1 2 DrawtheasymptoticapproximationofL inthelowfrequencyrange 3 Changetheslopeatthebreakfrequency 4 Thi
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年上半年四川阿坝州考核招聘事业单位人员90人考前自测高频考点模拟试题及完整答案详解一套
- 2025湖州新伦供电服务有限公司招聘45人考前自测高频考点模拟试题含答案详解
- 祖国的花朵完整手势课件
- 德尔塔病毒知识培训课件
- 2025年河北沧州海兴县公开招聘社区工作者27名考前自测高频考点模拟试题完整参考答案详解
- 2025鲁控环保科技有限公司招聘20人(山东)考前自测高频考点模拟试题附答案详解(黄金题型)
- 智研咨询发布-2025年漆包扁线行业现状、发展环境及深度分析报告
- 2025年中国气动工具行业市场竞争格局、市场运行态势分析报告(智研咨询)
- 德古法律知识培训课件
- 2025广西旅发大健康产业集团有限公司公开招聘110人考前自测高频考点模拟试题及答案详解(历年真题)
- 场地无偿使用的协议书
- DB32/T 2283-2024 公路工程水泥搅拌桩成桩质量检测规程
- 多源异构数据融合方法研究
- 医德医风考评表
- 2023年江苏省综合评标专家库和专家续聘考核题(公共基础)汇总
- 煤气化原理和方法(煤气化技术课件)
- 中药湿敷技术
- 一例双侧椎动脉支架植入术的护理查房培训课件
- 新华字典第12版电子版
- 冷水滩事业编招聘2022年考试《公共基础知识》真题及答案解析【完整word版】
- GB/T 4892-2008硬质直方体运输包装尺寸系列
评论
0/150
提交评论