简单线性回归模型.ppt_第1页
简单线性回归模型.ppt_第2页
简单线性回归模型.ppt_第3页
简单线性回归模型.ppt_第4页
简单线性回归模型.ppt_第5页
已阅读5页,还剩54页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 TheSimpleRegressionModel y b0 b1x u 2 SomeTerminology Inthesimplelinearregressionmodel wherey b0 b1x u wetypicallyrefertoyastheDependentVariable orLeft HandSideVariable orExplainedVariable orRegressand orResponseVariables 3 SomeTerminology cont Inthesimplelinearregressionofyonx wetypicallyrefertoxastheIndependentVariable orRight HandSideVariable orExplanatoryVariable orRegressor orCovariate orControlVariables 4 TheSimpleRegressionModel y b0 b1x uIftheotherfactorsinuareheldfixed sothatthechangeinuiszero u 0 thenxhasalineareffectony y b1 xif u 0 theerrorterm ordisturbance 5 Example2 1SoybeanYieldandFertilizeryield b0 b1fertilizer uThecoefficientb1measurestheeffectoffertilizeronyield holdingotherfactorsfixed yield b1 fertilizerExample2 2ASimpleWageEquationwage b0 b1educ ub1measuresthechangeinhourlywagegivenanotheryearofeducation holdingallotherfactorsfixed 6 ZeroConditionalMean WeneedtomakeacrucialassumptionabouthowuandxarerelatedWewantittobethecasethatknowingsomethingaboutxdoesnotgiveusanyinformationaboutu sothattheyarecompletelyunrelated Thatis thatE u x E u 0 whichimpliesE y x b0 b1xPopulationRegressionFunction PRF 7 x1 x2 E y x asalinearfunctionofx whereforanyxthedistributionofyiscenteredaboutE y x PRF E y x b0 b1x y f y 8 Themeaningof linear regression Whatdoes linear meanhere Lookingatequationy b0 b1x uThekeyisthatthisequationislinearintheparameters b0andb1 Therearenorestrictionsonhowyandxrelatetotheoriginalexplainedandexplanatoryvariablesofinterest 9 Themeaningof linear regression Arethesemodelslinearregressionmodel Why 10 OrdinaryLeastSquares BasicideaofregressionistoestimatethepopulationparametersfromasampleLet xi yi i 1 n denotearandomsampleofsizenfromthepopulationForeachobservationinthissample itwillbethecasethatyi b0 b1xi ui 11 y4 y1 y2 y3 x1 x2 x3 x4 u1 u2 u3 u4 x y Populationregressionline sampledatapointsandtheassociatederrorterms E y x b0 b1x 12 DerivingOLSEstimates Giventheintuitiveideaoffittingaline wecansetupaformalminimizationproblemThatis wewanttochooseourparameterssuchthatweminimizethefollowing 13 DerivingOLSEstimates continued Ifoneusescalculustosolvetheminimizationproblemforthetwoparametersyouobtainthefollowingfirstorderconditions 14 DerivationofOLS Giventhedefinitionofasamplemean andpropertiesofsummation wecanrewritethefirstconditionasfollows 15 MoreDerivationofOLS 16 SotheOLSestimatedslopeis 17 SummaryofOLSslopeestimate TheslopeestimateisthesamplecovariancebetweenxandydividedbythesamplevarianceofxIfxandyarepositivelycorrelated theslopewillbepositiveIfxandyarenegativelycorrelated theslopewillbenegativeOnlyneedxtovaryinoursample 18 SampleRegressionFunction SRF SampleRegressionFunction SRF Wecanwritetheslopeestimateas 19 ANoteonTerminology Weruntheregressionofyonx orsimplythatweregressyonx Wealwaysregressthedependentvariableontheindependentvariable 20 MoreOLS Intuitively OLSisfittingalinethroughthesamplepointssuchthatthesumofsquaredresidualsisassmallaspossible hencethetermleastsquaresTheresidual isanestimateoftheerrorterm u andisthedifferencebetweenthefittedline sampleregressionfunction andthesamplepoint 21 y4 y1 y2 y3 x1 x2 x3 x4 1 2 3 4 x y Sampleregressionline sampledatapointsandtheassociatedestimatederrorterms 22 AlgebraicPropertiesofOLS ThesumoftheOLSresidualsiszeroThus thesampleaverageoftheOLSresidualsiszeroaswellThesamplecovariancebetweentheregressorsandtheOLSresidualsiszeroTheOLSregressionlinealwaysgoesthroughthemeanofthesample 23 AlgebraicProperties precise 24 Example2 3 CEOSalaryandReturnonEquitySalary b0 b1roe u 25 Example2 4 WageandEducation 26 Example Thedemandfunctionofbooks 27 Moreterminology Wecanthinkofeachobservationasbeingmadeupofanexplainedpart andanunexplainedpart Then wedefinethefollowing ThenSST SSE SSR 28 ProofthatSST SSE SSR 29 Goodness of Fit Howdowethinkabouthowwelloursampleregressionlinefitsoursampledata Cancomputethefractionofthetotalsumofsquares SST thatisexplainedbythemodel callthistheR squaredofregressionR2 SSE SST 1 SSR SST 30 AssumptionsofSimpleLinearRegression Assumethepopulationmodelislinearinparametersasy b0 b1x uAssumewecanusearandomsampleofsizen xi yi i 1 2 n fromthepopulationmodel Thuswecanwritethesamplemodelyi b0 b1xi uiAssumeE u x 0andthusE ui xi 0AssumethereisvariationinthexiAssumeVar u x s2 Homoskedasticity 31 x1 xi u1 ui x y PRFE y x b0 b1x y1 yi 32 Homoskedasticity Var u x E u2 x E u x 2E u x 0 sos2 E u2 x E u2 Var u Thuss2isalsotheunconditionalvariance calledtheerrorvariances thesquarerootoftheerrorvarianceiscalledthestandarddeviationoftheerrorCansay E y x b0 b1xandVar y x s2 33 x1 x2 HomoskedasticCase E y x b0 b1x y f y x 34 x x1 x2 y f y x HeteroskedasticCase x3 E y x b0 b1x 35 SampleVarianceoftheOLSEstimators 36 VarianceofOLSSummary Thelargertheerrorvariance s2 thelargerthevarianceoftheslopeestimateThelargerthevariabilityinthexi thesmallerthevarianceoftheslopeestimateAsaresult alargersamplesizeshoulddecreasethevarianceoftheslopeestimateProblemthattheerrorvarianceisunknown 37 EstimatingtheErrorVariance Wedon tknowwhattheerrorvariance s2 is becausewedon tobservetheerrors uiWhatweobservearetheresiduals iWecanusetheresidualstoformanestimateoftheerrorvariance 38 ErrorVarianceEstimate cont 39 ErrorVarianceEstimate cont 40 TheGauss MarkovTheorem Givenour5Gauss MarkovAssumptionsitcanbeshownthatOLSis BLUE BestLinearUnbiasedThus iftheassumptionshold useOLS 41 LinearityofOLS 42 UnbiasednessofOLS Inordertothinkaboutunbiasedness weneedtorewriteourestimatorintermsofthepopulationparameterStartwithasimplerewriteoftheformulaas 43 UnbiasednessofOLS cont 44 UnbiasednessofOLS cont 45 UnbiasednessofOLS cont 46 UnbiasednessSummary TheOLSestimatesofb1andb0areunbiasedProofofunbiasednessdependsonour4assumptions ifanyassumptionfails thenOLSisnotnecessarilyunbiasedRememberunbiasednessisadescriptionoftheestimator inagivensamplewemaybe near or far fromthetrueparameter 47 EfficiencyofOLS Assumeb1 isanotherlinearunbiasedestimatorofb1isanunbiasedestimator so 48 EfficiencyofOLS cont 49 RegressionThroughTheOrigin ObtaintheequationiscalledregressionthrouththeoriginToobtaintheslopeestimate westillrelyonthemethodofordinaryleastsquares thatismininizingthesumofsquaresresiduals Usingcalculus mustsolvethefirstordercondition 50 ChangingUnitsofMeasurementonOLSStatistics InExample2 3 wemeasureannualsalaryinthousandsofdollars thereturnonequitywasmeasuredasapercent ratherthanadecimal LetsalarydolbesalaryindollarsDefineroedec roe 100tobethedecimalequivalentofroe 51 NonlinearitiesinSimpleRegression Recallthewage educationexample whereweregressionhourlywageonyearsofeducation WeusealogarithmicformInparticular if u 0 then wage 100b1 educThisequationimpliesanincreasingreturntoeducation 52 AConstantElasticityModel ExampleCEOSalaryandFirmSalesWecanestimateaconstantelasticitymodelrelatingCEOsalarytofirmsales Letsalesbeannualfirmsales measuredinmillionsofdollars log salary b0 b1log sales uLetthedependentvariabletobey log salary andtheindependen

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论