兔子数列.doc_第1页
兔子数列.doc_第2页
兔子数列.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

_趣味数学:兔子繁殖与斐波纳奇数列(适合四、五、六年级) 公元13世纪,在意大利有一位天才的数学家名字叫斐波纳奇,他在一本算盘之书的著作里记载了这样一道数学题: 有一对兔子,每一个月可以生下一对小兔子,而且假定小兔子在出生的第二个月便有生育能力,那么过一年后,问一共能有多少对兔子?假设每产一对必须是一雌兔一雄兔,并且所有的兔子都能进行相互交配,所生下来的兔子都能保证成活率。 究竟有多少对呢?我们不妨计算一下,一对兔子,在一个月后生出了一对,总数是两对。而在这两对当中,只有第一对兔子有生育能力,因而两个月后一共有三对兔子,三个月后第一第二对兔子都有生育能力,因此又新出生两对兔子,总共有五对兔子,这样依此类推,经过一年(十二个月)后,兔子总数为233对。 即兔子的对数依次为: 1,2,3,5,8,13,21,34,55,89,144,233,研究一下这个数列,我们会惊奇地发现它有许多有趣的性质:从第三项起,每一项的数都是紧挨着它前面的两项的数字之和。即 321;523;835;23389+144, 这个数列的发现对人类数学及自然科学的发展具有重大的意义,人们为了纪念大数学家斐波纳奇,因而把此数列命名为斐波纳奇数列。斐波纳奇数列在生活中有着广泛的运用。试举一例:一个人上楼梯,可以一步上一级台阶,也可以一步上两级台阶。现在假设某层楼梯有10级台阶。那么从这层楼的下面走到上面,共有多少种不同的走法? 解:根据题意列出各级楼梯的走法如下:括号里面的数字表示每次上楼梯走的级数,1个算式或数表示一种走法)第一级:1种(1)第二级:2种(1+1,2)第三级:3种(1+1+1,2+1,1+2)第四级:5种(1+1+1+1,1+1+2,1+2+1,2+1+1,2+2)第五级:8种(1+1+1+1+1,1+1+1+2,1+1+2+1,1+2+1+1,2+1+1+1,1+2+2,2+1+2,2+2+1)第六级: 其规律为:从第三项起,每一项的数都是紧挨着它前面的两项的数字之和。列表如下:级数12345678910走法123581321345589 所以到第十级楼梯一共有89种不同的走法。 思考:从一楼教室到二楼的微机室一共有13级台阶,如果每一步只登上一级或两级台阶,那么从一楼教室到微机室一共有多少种不同的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论