




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
。卡尔曼滤波研究综述1 卡尔曼滤波简介1.1卡尔曼滤波的由来1960年卡尔曼发表了用递归方法解决离散数据线性滤波问题的论文-A New Approach to Linear Filtering and Prediction Problems(线性滤波与预测问题的新方法),在这篇文章里一种克服了维纳滤波缺点的新方法被提出来,这就是我们今天称之为卡尔曼滤波的方法。卡尔曼滤波应用广泛且功能强大,它可以估计信号的过去和当前状态甚至能估计将来的状态即使并不知道模型的确切性质。其基本思想是以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值。算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。对于解决很大部分的问题,它是最优,效率最高甚至是最有用的。它的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。1.2 标准卡尔曼滤波-离散线性卡尔曼滤波为了描述方便我们作以下假设:物理系统的状态转换过程可以描述为一个离散时间的随机过程;系统状态受控制输入的影响;系统状态及观测过程都不可避免受噪声影响;对系统状态是非直接可观测的。在以上假设前提下,得到系统的状体方程和观测方程。 1-1式中:Xk为状态向量,Lk为观测向量,k,k-1为状态转移矩阵,Uk-1为控制向量,一般不考虑,k,k-1,Bk为系数矩阵,k-1为系统动态噪声向量,k为观测噪声向量,其随机模型为E(k) =0;E(k) =0;cov(k,j) = D(k)kj,cov(k,j) = Dk(k)kj;cov(k,j) =0;E(X0) =x(0)var(X0) = D(X0);cov(X0,k) =0;cov(X0,k) =0. 1-2卡尔曼滤波递推公式为(k/k) = (k/k-1)+Jk(Lk-Bk(k/k-1),D(k/k) = (E-JkBk)Dx(k/k-1),Jk= Dx(k/k-1)BTkBkDx(k/k-1)BTk+D(k)-1,(k/k-1) =k,k-1(k-1/k-1),Dx(k/k-1) =k,k-1Dx(k-1/k-1)Tk,k-1+k,k-1D(k-1)Tk,k-1. 1-32 几种最新改进型的卡尔曼滤波算法。2.1 近似二阶扩展卡尔曼滤波标准的卡尔曼滤波只适用于线性系统,而工程实际问题涉及的又大多是非线性系统,于是基于非线性系统线性化的扩展卡尔曼滤波(EKF)在上世纪70年代被提出,目前已经成为非线性系统中广泛应用的估计方法。近似二阶扩展卡尔曼滤 波方法(AS-EKF)基于线性最小方差递推滤波框架,应用均值变换的二阶近似从而得到非线性系统的递推滤波滤波框架该滤波基于线性最小方差递推框架,状态X的最小方差估计为 2-1-1L是观测矩阵,假定状态X的估计值是观测矩阵L的线性函数,即 2-1-2得到最优估计和估计误差方差阵的递推方程分别为: 2-1-2 2-1-32.1.2近似二阶扩展卡尔曼滤波器的设计在EKF中,假设非线性函数y=f(X)在状态X的最优估计(预测)值处线性化,即 2-1-4y的均值、方差和协方差的近似估计 2-1-5对均值进行二阶近似,而对方差和协方差进行一阶近似,即可得 2-1-6考虑如下带加性噪声的非线性离散系统X(k+1) =f(X(k),k) +(X(k),k)V(k)L(k+1) =h(X(k+1),k+1) +W(k+1)将式2-1-6 所使用的近似二阶方法代入2-1-2,和2-1-3,可得如下近似二阶卡尔曼滤波递推公式。预测阶段: (k+1|k)=f( (k),k)+1/2( TP(k) )f(X,k) | (X= (k) 2-1-7 P(k+1|k)=k/k-1P(k)Tk/k-1+(X(k),k)Q(k)T(X(k),k) (k+1|k)=h( (k+1|k),k+1)+1/2( TP(k+1|k) )h(X,k+1) |X= (k+1|k)更新阶段:K(k+1) =P(k+1|k)HTk+1(Hk+1P(k+1|k)HTk+1+R(k+1)-1 2-1-8 (k+1) = (k+1|k)+K(k+1)L(k+1)- (k+1k) P(k+1) = (I-K(k+1)Hk+1)P(k+1|k)(I-K(k+1)Hk+1)T+K(k+1)R(k+1)KT(k+1)其中|X(k)= ,|X(k+1)= (k+1|k)Q(k)为系统噪声序列V(k)的方差阵,R(k)为测量噪声序列W(k)的方差阵。2.2扩维无迹卡尔曼滤波无迹卡尔曼滤波(Unscented Kalman Filter,UKF),它是在以无迹变换(Unscented Transformation,UT)为基础,借用卡尔曼线性滤波框架而建立起来的。它直接利用非线性状态方程来估算状态向量的概率密度函数。但是,简单的UKF在面对系统中的噪声影响较大时不能得到精确的滤波结果, 改进的无迹卡尔曼滤波算法则是在初始状态中引入过程噪声和测量噪声,使得采样点也包括了这些噪声,这样在状态预测和更新过程中,噪声的影响就能够在非线性系统中进行传输和估计,使得滤波信号更好地接近真实值,尤其是当信号的系统噪声和观测噪声影响较大时。其算法如下:设非线性系统模型为:X(k) =f(X(k-1) +V(k-1) 2-2-1 L(k) =h(X(k) +W(k)其中,X(k)是系统k时刻的n维状态向量,L(k)是系统k时刻的测量向量,f(),h()为非线性变换,过程噪声V(k)和测量噪声W(k)是零均值。方差阵各为Q和R的不相关的高斯白噪声,其统计特性满足:EW(k) =0,EV(k) =0 2-2-3EW(i)W(j) =Rij, EV(i)V(j) =Qij, EW(i)V(j)T =0初始状态为a(0|0) = (0|0)T00T 2-2-4状态变量为 a(k |k) = (k |k)TV(k |k)TW(k |k)TT 2-2-5状态方差为 2-2-6此时的采样点集变为ai(k |k), i =0,1,2N,N = (n +q+m),q为Q的维数,m为R的维数,采样点的状态维数变为n+q+m,xi为ai的前n维组成的列向量,vi为ai的n+1维到n+q维组成的列向量,wi为ai的n+q+1维到n+q+m维组成的列向量。时间更新过程变为 2-2-7测量更新过程变为: K(k) =PXL(k |k-1)P-1LL(k |k-1) (k |k) = (k |k-1) +K(k)(L(k) - (k |k-1) 2-2-8PXX(k |k) =PXX(k |k-1) -K(k)PLL(k |k-1)KT(k) 由于状态是按扩维处理的,Sigma采样点的个数为2(n+q+m) +1,维数为N(2N+1),而不扩维时,Sigma采样点的个数为2n+1,维数为n(2n+1),所以,使用扩维计算量上升得比较快,当数据量过大时,耗费的计算时间长。改进的UKF算法就是将过程噪声和测量噪声也包含在采样点集中,二是在时间更新过程中,状态值考虑过程噪声的影响,测量值考虑测量噪声的影响,因此当测量噪声和过程噪声对系统影响较大时,利用UKF算法所得到的X与真实值之间有较大的误差,而此时改进UKF算法就却能得到更好的滤波结果。2.3自适应卡尔曼滤波传统的滤波限制条件比较苛刻.它要求系统模型精确以及系统误差模型和观测误差模型已知.这在实际应用中是很难满足的,或者在系统工作过程中,模型发生变化,这些都导致传统KF的滤波发散或精度下降。针对此不足,很多学者提出了不同的方法加以克服,其中自适应卡尔曼滤波(以下简称AKF)因为具有自适应特性非常适合动态系统滤波而受到广泛重视,因此在采用卡尔曼滤波处理动态测量数据时,一般都要考虑采取适当的自适应滤波方法来解决这一问题。在此主要介绍AKF的两个最主要的研究方向。2.3.1多模型AKF多模型AKF (Multiple Model AKF)最早由Magill在1965年提出的.它由一组卡尔曼滤波器组成,每一个卡尔曼滤波器使用不同的系统模型,各个卡尔曼滤波器并行运行,根据观测向量估计各自的状态k(i).其中p(i|Lk)表示在测量值为Zk的情况下,第i个滤波器的权值.i表示未知随机变量.多模型估计为k=k(i)p(i|Lk). 2-3-1随着时间的不断增加,系统会选出最优的一个滤波器并将其权值p(i|Lk)增大,而其它权值相应减小.多模型AKF性能最优的前提条件是所用的模型集包含了系统所有可能的模式,但是这个前提条件往往是很难满足的.模型集的设计是多模型估计中最重要和最困难的事情.在动态系统中,系统模型的不确定性导致模型集的设计更加困难.而且由于p(i|Lk)难以确定,所以多模型AKF一直处于理论研究阶段.区间分析是一种研究有界区间变化模型的方法,如果将区间分析与多模型结合,那么模型集可以覆盖整个模型变化区间,以利于模型集的设计.这是一个值得期待的研究方向.2.3.2基于信息的AKF多模型AKF和基于信息的AKF是AKF两个最主要的研究方向.大量文献研究了基于信息的AKF.这种方法主要分为两类:利用信息估计Q(k)和R(k),从而调整增益矩阵J(k);利用信息直接对J(k)进行自适应估计定义信息为V(k) =L(k) - (k),则有如下估计 2-3-2.其中, .这种估计采用了最大似然准则(maximum likelihood),是一种最优无偏估计.有学者不仅估计了Q(k)和R(k),还估计了噪声均值和,对增益矩阵K(k)进行估计,结果如下 2-3-4第一种方法的适用范围更加广泛.因为它不仅估计了噪声的方差阵,而且可以估计噪声的均值.这种情况不仅满足了白噪声序列,而且还能满足有色噪声序列,尤其是在观测噪声是有色噪声的高动态系统中.但是这种估计方法的计算量很大,难以满足系统的实时性要求.第二种方法利用信息直接估计增益矩阵K(k),计算量相对较小.由于这种方法多处出现矩阵求逆计算,实时性和稳定性难以满足要求.另外,这种方法要求系统可观测,而且它仅仅适合白噪声.目前,基于信息的AKF主要是通过调整噪声统计特性达到自适应的目的,解决了因为噪声统计特性不明确或噪声发生变化的情况.但是对于系统其它模型发生变化不能达到自适应的目的,如系统矩阵(k+1, k),(k+1, k), C(k)发生变化。2 几种卡尔曼滤波算法的比较3.1 近似二阶卡尔曼滤波近似二阶卡尔曼滤波是非线性系统的递推滤波算法。仿真表明在滤波计算量略高于EKF的情况下,滤波精度明显高于EKF,同时计算量明显低于UKF。故该滤波方法适用于对滤波精度和计算量都有所要求的非线性系统滤波问题。在对估计精度和计算量都有一定要求的非线性系统滤波器设计中,AS-EKF方法较为适用,故在空间科学技术及其他邻域具有一定的应用前景。AS-EKF也有自己的不足,由于需要对系统进行线性化处理,因此需要计算系统的雅克比矩阵,可是在许多实际情况中,很难得到非线性函数的雅克比矩阵,同时,在面对一个复杂的非线型系统时,EKF实现起来非常困难,尤其是非线性函数Taylor展开式的高阶项无法忽略时,线性化会使系统产生较大的误差,并且易导致滤波器的不稳定。3.2 扩维无迹卡尔曼滤波无迹卡尔曼滤波是在以无迹变换(Unscented Transformation,UT)为基础,借用卡尔曼线性滤波框架而建立起来的。它直接利用非线性状态方程来估算状态向量的概率密度函数,相对于EKF的一阶精确,UKF的估计精确度提高到了对高斯数据的三阶精确和对任何非线性的非高斯数据的二阶精确,可处理非加性噪声情况以及离散系统。而且UKF对滤波参数不敏感,鲁棒性强,尤其对复杂的非线性系统,UKF比EKF具有更大的优越性。但是,简单的UKF在面对系统中的噪声影响较大时不能得到精确的滤波结果, 扩维无迹卡尔曼滤波是一种提高精确度的无迹卡尔曼滤波算法,和常规的UKF相比,它有效的降低了噪声的影响仿真结果表明,改进的UKF算法,在采样的时候,将系统噪声和过程噪声也进行了采样,并将其包含进采样点集中,同时引入到算法过程中,与常规UKF相比,提高了滤波的精确度和灵敏性,并且鲁棒性好,因此在雷达和精确导航方面应用前景广泛。3.3 自适应Kalman滤波从自适应Kalman滤波公式中我们可以看出,在变形监测中,由于滤波方程是一组递推计算公式,计算过程是一个不断预测、修正的过程;在求解时,具有能够求解出速度参数,修正干扰引起的突变,更符合变形趋势实际的优点;并且当得到新的观测数据时,可随时计算新的滤波值,便于实时处理观测成果,把参数估计和预报有机地结合起来。因此,自适应Kalman滤波特别适合变形监测动态数据的处理。自适应Kalman滤波的一个不足之处是在于它是基于过去所有观测的条件期望,且对这些观测值都予以均一的权值,即对新、老数据给予相同的置信度。因此,随着时间的推移,当采集到的数据越来越多,从新数据中获得的信息量就会相对下降,算法慢慢失去修正能力,使得参数估计值可能会偏离真值较远而无法更新。 参考文献1 符拯,王叔满,刘丙杰 .自适应卡尔曼滤波的最新进展.战术导弹技术,2009,(6).2 黄铫,张天骐,高清山,李越雷. 一种提高无迹卡尔曼滤波精确度的方法.计算机仿真,2010年3月3 范炜,李勇. 近似二阶扩展卡尔曼滤波方法研究.空间控制技术与应用.2009年12月4 李鹏,宋申民,陈兴林.自适应平方根无迹卡尔曼曼滤滤波算法.控制理论与应用.2010年2月5 张福荣. 自适应卡尔曼滤波在变形监测
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 惠州烟花安全知识培训课件
- 情绪小怪兽课件
- 深海新质生产力
- 新员工培训活动方案
- 公司员工绩效考核方案管理
- 恒温机械设备基础知识培训课件
- 恐龙课件教学课件
- 制定教学工作进度方案
- 2026届山东省青岛胶州市化学高二第一学期期末达标检测试题含答案
- 装修勘察考试题及答案
- 民族文化宫2025年公开招聘17人笔试模拟试题含答案详解
- 2025年幼儿园教师专业考试试题及答案书
- 2025秋新部编版一年级上册语文教学计划+教学进度表
- 2025年国家公务员考试行测真题及答案(完整版)
- 小型企业网络构建:VPN设置与配置详解
- 消化道内异物疑难病例讨论
- 2025年预防接种技能竞赛征集试题
- 道路运输安全生产法律法规有哪些
- 年度述职活动方案
- 抗衰老培训课件
- 肿瘤科讲课课件
评论
0/150
提交评论