


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
。一【要点归纳】1多面体的面积和体积公式名称侧面积(S侧)全面积(S全)体 积(V)棱柱棱柱直截面周长lS侧+2S底S底h=S直截面h直棱柱chS底h棱锥棱锥各侧面积之和S侧+S底S底h正棱锥ch棱台棱台各侧面面积之和S侧+S上底+S下底h(S上底+S下底+)正棱台 (c+c)h表中S表示面积,c、c分别表示上、下底面周长,h表斜高,h表示斜高,l表示侧棱长。2旋转体的面积和体积公式名称圆柱圆锥圆台球S侧2rlrl(r1+r2)lS全2r(l+r)r(l+r)(r1+r2)l+(r21+r22)4R2Vr2h(即r2l)r2hh(r21+r1r2+r22)R3表中l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台 上、下底面半径,R表示半径二【典例解析】题型1:柱体的体积和表面积例1一个长方体全面积是20cm2,所有棱长的和是24cm,求长方体的对角线长.点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。例2在平行六面体ABCDA1B1C1D1中,已知AB=5,AD=4,AA1=3,ABAD,A1AB=A1AD=。(1)求证:顶点A1在底面ABCD上的射影O在BAD的平分线上;(2)求这个平行六面体的体积题型2:柱体的表面积、体积综合问题例3一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是( )A2 B3 C6 D点评:解题思路是将三个面的面积转化为解棱柱面积、体积的几何要素棱长。例4如图,三棱柱ABCA1B1C1中,若E、F分别为AB、AC 的中点,平面EB1C1将三棱柱分成体积为V1、V2的两部分,那么V1V2= _ _。2 2 2 正(主)视图 2 2 侧(左)视图 点评:解题的关键是棱柱、棱台间的转化关系,建立起求解体积的几何元素之间的对应关系。最后用统一的量建立比值得到结论即可题型3:锥体的体积和表面积例5一空间几何体的三视图如图所示,则该几何体的体积为( ).A. B. C. D. 【命题立意】:本题考查了立体几何中的空间想象能力,由三视图能够想象得到空间的立体图,并能准确地计算出.几何体的体积.例6、设OA是球O的半径,M是OA的中点,过M且与OA成45角的平面截球O的表面得到圆C。若圆C的面积等于,则球O的表面积等于 例7ABCD是边长为4的正方形,E、F分别是AB、AD的中点,GB垂直于正方形ABCD所在的平面,且GC2,求点B到平面EFC的距离?点评:该问题主要的求解思路是将点面的距离问题转化为体积问题来求解。构造以点B为顶点,EFG为底面的三棱锥是解此题的关键,利用同一个三棱锥的体积的唯一性列方程是解这类题的方法,从而简化了运算。例8已知三个球的半径,满足,则它们的表面积,满足的等量关系是_. 例11如图所示,球面上有四个点P、A、B、C,如果PA,PB,PC两两互相垂直,且PA=PB=PC=a,求这个球的表面积。点评:本题也可用补形法求解。将PABC补成一个正方体,由对称性可知,正方体内接于球,则球的直径就是正方体的对角线,易得球半径R=a,下略题型4:球的面积、体积综合问题例9(1)表面积为的球,其内接正四棱柱的高是,求这个正四棱柱的表面积。(2)正四面体ABCD的棱长为a,球O是内切球,球O1是与正四面体的三个面和球O都相切的一个小球,求球O1的体积。题型5:球面距离问题例10在北纬圈上有两点,设该纬度圈上两点的劣弧长为(为地球半径),求两点间的球面距离点评:要求两点的球面距离,必须先求出两点的直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒店展厅出租协议书范本
- 茶艺馆茶艺培训与茶艺师就业合作协议
- 商业地产车位租赁与广告合作合同
- 股权激励解除及部分股权转让与公司业绩补偿合同
- 房屋捐赠使用协议书范本
- 委托拆除围挡协议书范本
- 合作双方的协议书范本
- 股权激励财务设计与咨询合同
- 厂房产权交易居间佣金协议
- 甜品店租赁及产品研发合作合同
- 2024年山东普通高中学业水平等级考试化学(原卷版)
- 接警员试题题库
- 湖南省岳阳市2024年八年级下学期期末物理试卷附答案
- DZ∕T 0284-2015 地质灾害排查规范(正式版)
- 《风电功率预测功能规范》
- 关于读后续写的可行操作课件-高三英语一轮复习
- 港口企业财务风险分析报告
- 2023年贵州黔西南州专项招聘国企业工作人员21人考前自测高频难、易考点模拟试题(共500题)含答案详解
- 中医护理实训报告总结
- 动画制作与电影特效课件
- 监理抽检表 - 08桥梁工程
评论
0/150
提交评论