




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
。必修2 1.3空间几何体的表面积、体积例1 已知棱长为a,各面均为等边三角形的四面体SABC(图6),求它的表面积.图6分析:由于四面体SABC的四个面是全等的等边三角形,所以四面体的表面积等于其中任何一个面面积的4倍.解:先求SBC的面积,过点S作SDBC,交BC于点D.因为BC=a,SD=,所以SSBC=BCSD=.因此,四面体SABC的表面积S=4.变式训练1.已知圆柱和圆锥的高、底面半径均分别相等.若圆柱的底面半径为r,圆柱侧面积为S,求圆锥的侧面积.解:设圆锥的母线长为l,因为圆柱的侧面积为S,圆柱的底面半径为r,即S圆柱侧=S,根据圆柱的侧面积公式可得:圆柱的母线(高)长为,由题意得圆锥的高为,又圆锥的底面半径为r,根据勾股定理,圆锥的母线长l=,根据圆锥的侧面积公式得:S圆锥侧=rl=r.2.两个平行于圆锥底面的平面将圆锥的高分成相等的三段,那么圆锥被分成的三部分的体积的比是( )A.123 B.1719 C.345 D.1927分析:因为圆锥的高被分成的三部分相等,所以两个截面的半径与原圆锥底面半径之比为123,于是自上而下三个圆锥的体积之比为()2h3h=1827,所以圆锥被分成的三部分的体积之比为1(81)(278)=1719.答案:B3.三棱锥VABC的中截面是A1B1C1,则三棱锥VA1B1C1与三棱锥AA1BC的体积之比是( )A.12 B.14 C.16 D.18分析:中截面将三棱锥的高分成相等的两部分,所以截面与原底面的面积之比为14,将三棱锥AA1BC转化为三棱锥A1ABC,这样三棱锥VA1B1C1与三棱锥A1ABC的高相等,底面积之比为14,于是其体积之比为14.答案:B例2 如图7,一个圆台形花盆盆口直径为20 cm,盆底直径为15 cm,底部渗水圆孔直径为1.5 cm,盆壁长为15 cm.为了美化花盆的外观,需要涂油漆.已知每平方米用100毫升油漆,涂100个这样的花盆需要多少毫升油漆?(取3.14,结果精确到1毫升)图7解:如图7,由圆台的表面积公式得一个花盆外壁的表面积S=-()21 000(cm2)=0.1(m2).涂100个这样的花盆需油漆:0.1100100=1 000(毫升).答:涂100个这样的花盆需要1 000毫升油漆.变式训练1.有位油漆工用一把长度为50 cm,横截面半径为10 cm的圆柱形刷子给一块面积为10 m2的木板涂油漆,且圆柱形刷子以每秒5周的速度在木板上匀速滚动前进,则油漆工完成任务所需的时间是多少?(精确到0.01秒)解:圆柱形刷子滚动一周涂过的面积就等于圆柱的侧面积,圆柱的侧面积为S侧=2rl=20.10.5=0.1 m2,又圆柱形刷子以每秒5周匀速滚动,圆柱形刷子每秒滚过的面积为0.5 m2,因此油漆工完成任务所需的时间t=6.37秒.2.已知三棱锥OABC中,OA、OB、OC两两垂直,OC=1,OA=x,OB=y,且x+y=4,则三棱锥体积的最大值是_.分析:由题意得三棱锥的体积是(x-2)2+,由于x0,则当x=2时,三棱锥的体积取最大值.答案:例3 有一堆规格相同的铁制(铁的密度是7.8 g/cm3)六角螺帽(图8)共重5.8 kg,已知底面是正六边形,边长为12 mm,内孔直径为10 mm,高为10 mm,问这堆螺帽大约有多少个?(取3.14)图8解:六角螺帽的体积是六棱柱体积与圆柱体积的差,即V=122610-3.14()2102 956(mm3)=2.956(cm3).所以螺帽的个数为5.81 000(7.82.956)252(个).答:这堆螺帽大约有252个.变式训练 如图9,有个水平放置圆台形容器,上、下底面半径分别为2分米,4分米,高为5分米,现以每秒3立方分米的速度往容器里面注水,当水面的高度为3分米时,求所用的时间.(精确到0.01秒)图9解:如图10,设水面的半径为r,则EH=r-2分米,BG=2分米,图10在ABG中,EHBG,.AH=2分米,.r=分米.当水面的高度为3分米时,容器中水的体积为V水=3()2+4+42=立方分米,所用的时间为36.69秒.答:所用的时间为36.69秒.自我测试1.正方体的表面积是96,则正方体的体积是( )A. B.64 C.16 D.96分析:设正方体的棱长为a,则6a2=96,解得a=4,则正方体的体积是a3=64.答案:B2.如图19所示,圆锥的底面半径为1,高为,则圆锥的表面积为( )A. B.2 C.3 D.4分析:设圆锥的母线长为l,则l=2,所以圆锥的表面积为S=1(1+2)=3.答案:C3.正三棱锥的底面边长为3,侧棱长为,则这个正三棱锥的体积是( )A. B. C. D.分析:可得正三棱锥的高h=3,于是V=.答案:D4.若圆柱的高扩大为原来的4倍,底面半径不变,则圆柱的体积扩大为原来的_倍;若圆柱的高不变,底面半径扩大为原来的4倍,则圆柱的体积扩大为原来的_倍.分析:圆柱的体积公式为V圆柱=r2h,底面半径不变,高扩大为原来的4倍,其体积也变为原来的4倍;当圆柱的高不变,底面半径扩大为原来的4倍时,其体积变为原来的42=16倍.答案:4 165.图20是一个正方体,H、G、F分别是棱AB、AD、AA1的中点.现在沿GFH所在平面锯掉正方体的一个角,问锯掉部分的体积是原正方体体积的几分之几?图20分析:因为锯掉的是正方体的一个角,所以HA与AG、AF都垂直,即HA垂直于立方体的上底面,实际上锯掉的这个角,是以三角形AGF为底面,H为顶点的一个三棱锥.解:设正方体的棱长为a,则正方体的体积为a3. 三棱锥的底面是RtAGF,即FAG为90,G、F又分别为AD、AA1的中点,所以AF=AG=.所以AGF的面积为.又因AH是三棱锥的高,H又是AB的中点,所以AH=.所以锯掉的部分的体积为.又因,所以锯掉的那块的体积是原正方体体积的.6.已知一圆锥的侧面展开图为半圆,且面积为S,则圆锥的底面面积是_.分析:如图21,设圆锥底面半径为r,母线长为l,由题意得解得r=,所以圆锥的底面积为r2=.图21答案:7.如图22,一个正三棱柱容器,底面边长为a,高为2a,内装水若干,将容器放倒,把一个侧面作为底面,如图23,这时水面恰好为中截面,则图22中容器内水面的高度是_. 图22 图23分析:图22中容器内水面的高度为h,水的体积为V,则V=SABCh.又图23中水组成了一个直四棱柱,其底面积为,高度为2a,则V=2a,h=.答案:8.圆台的两个底面半径分别为2、4,截得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度个人经营性贷款合同参考范本
- 二零二五年度智能家居产品研发员工劳动雇佣合同范本
- 2025年度有机冷鲜肉直采直销合作协议
- 二零二五年度房地产企业廉洁项目合作协议
- 2025版智慧城市能源管理系统设计与实施合同
- 二零二五年度房地产项目样板间装修合同
- 2025版文化创意产业投资合作协议
- 2025版房产评估代理服务合同
- 二零二五年度婚姻终止服务协议书
- 2025年硝基呋喃类药项目合作计划书
- 2025年甘肃省高考地理试卷真题(含答案解析)
- 2025年保密知识在线学习测考试试题及答案指导
- 农村家庭农场蔬菜种植合同
- 导游技能高考题目及答案
- 2025年浙江省金华市金华十校物理高一第二学期期末学业质量监测试题含解析
- 2025年高中教师(数学学科)招聘考试测试卷及答案(共三套)
- (高清版)DB32∕T 5133-2025 电动工具安全风险评估规范
- 新版《绿色建筑评价标准》2课件
- YS/T 724-2016多晶硅用硅粉
- GA 802-2019道路交通管理机动车类型
- 大肠癌教学讲解课件
评论
0/150
提交评论