




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
分式方程应用题分类解析分式方程应用性问题联系实际比较广泛,灵活运用分式的基本性质,有助于解决应用问题中出现的分式化简、计算、求值等题目,运用分式的计算有助于解决日常生活实际问题本课内容:1. 营销类应用性问题2. 工程类应用性问题3. 行程中的应用性问题4. 轮船顺逆水应用性问题5. 浓度应用性问题6. 货物运输应用性问题一、【营销类应用性问题】例11 某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料每千克少3元,比乙种原料每千克多1元,问混合后的单价每千克是多少元?分析:市场经济中,常遇到营销类应用性问题,与价格有关的是:单价、总价、平均价等,要了解它们的意义,建立它们之间的关系式总价值价格数量甲2000元乙4800元混合X元解:设混合后的单价为每千克 元,则甲种原料的单价为每千克元,混合后的总价值为(20004800)元,混合后的重量为斤,甲种原料的重量为,乙种原料的重量为,依题意,得:=,解得,经检验,是原方程的根,所以即混合后的单价为每千克17元评析:营销类应用性问题,涉及进货价、售货价、利润率、单价、混合价、赢利、亏损等概念,要结合实际问题对它们表述的意义有所了解,同时,要掌握好基本公式,巧妙建立关系式随着市场经济体制的建立,这类问题具有较强的时代气息,因而成为中考常考不衰的热点问题例12 A、B两位采购员同去一家饲料公司购买同一种饲料两次,两次饲料的价格有变化,但两位采购员的购货方式不同其中,采购员A每次购买1000千克,采购员B每次用去800元,而不管购买饲料多少,问选用谁的购货方式合算?解: 两次购买的饲料单价分别为每1千克m元和n元(m0,n0,mn),依题意,得: 采购员A两次购买饲料的平均单价为(元千克),采购员B两次购买饲料的平均单价为(元千克)而0 也就是说,采购员A所购饲料的平均单价高于采购员B所购饲料的平均单价,所以选用采购员B的购买方式合算例12 某商场销售某种商品,一月份销售了若干件,共获得利润30000元;二月份把这种商品的单价降低了 0.4元,但是销售量比一月份增加了5000件,从而获得利润比一月份多2000元,调价前每件商品的利润为多少元?分析: 可以列出三个等量关系12月份销售量一1月份销售量=500022月份销售量2月份利润=2月份总利润31月份利润一2月份利润=0.4二、【工程类应用性问题】例21 甲乙两个工程队合作一项工程,两队合作2天后,由乙队单独做1天就完成了全部工程。已知乙队单独做所需天数是甲队单独做所需天数的 倍,问甲乙单独做各需多少天?分析:单独做所需时间一天的工作量 实际做时间工作量 甲x天2天 1 乙(2+1)天等量关系:甲队单独做的工作量+乙队单独做的工作量=1例22 甲、乙两个学生分别向计算机输入1500个汉字,乙的速度是甲的3倍,因此比甲少用20分钟完成任务,他们平均每分钟输入汉字多少个?分析:输入汉字数每分钟输入个数所需时间甲1500个x个/分乙1500个3x个/分等量关系:甲用时间=乙用时间+20(分钟)例23 某农场原计划在若干天内收割小麦960公顷,但实际每天多收割40公顷,结果提前4天完成任务,试求原计划一天的工作量及原计划的天数。分析1:工作总量一天的工作量所需天数原计划情况960公顷x公顷实际情况960公顷(x+40)公顷等量关系:原计划天数=实际天数+4(天)分析2: 工作总量所需天数一天的工作量原计划情况960公顷实际情况960公顷等量关系:原计划每天工作量=实际每天工作量-40(公顷)例24 某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元,乙、丙两队合做10天完成,厂家需付乙、丙两队共9500元,甲、丙两队合做5天完成全部工程的,厂家需付甲、丙两队共5500元求甲、乙、丙各队单独完成全部工程各需多少天?若工期要求不超过15天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由分析:这是一道联系实际生活的工程应用题,涉及工期和工钱两种未知量对于工期,一般情况下把整个工作量看成1,设出甲、乙、丙各队完成这项工程所需时间分别为天,天,天,可列出分式方程组解:设甲队单独做需天完成,乙队单独做需天完成,丙队单独做需天完成,依题意可得:,得=,得=,即z = 30,得=,即x = 10,得=,即y = 15经检验,x = 10,y = 15,z = 30是原方程组的解设甲队做一天厂家需付元,乙队做一天厂家需付元,丙队做一天厂家需付元,根据题意,得由可知完成此工程不超过工期只有两个队:甲队和乙队此工程由甲队单独完成需花钱元;此工程由乙队单独完成需花钱元所以,由甲队单独完成此工程花钱最少评析:在求解时,把,分别看成一个整体,就可把分式方程组转化为整式方程组来解例25 某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期三天完成现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成,问规定日期是多少天?解: 工程规定日期就是甲单独完成工程所需天数,设为x天,那么乙单独完成工程所需的天数就是(x3)天.设工程总量为1,甲的工作效率就是,乙的工作效率是,依题意,得,解得即规定日期是6天 例26 今年某大学在招生录取时,为了防止数据输入出错,2640名学生的成绩数据分别由两位教师向计算机输入一遍,然后让计算机比较两人的输入是否一致.已知教师甲的输入速度是教师乙的2倍,结果甲比乙少用2小时输完.问这两位教师每分钟各能输入多少名学生的成绩? 解: 设教师乙每分钟能输入x名学生的成绩,则教师甲每分钟能输入2x名学生的成绩,依题意,得:, 解得 x11 经检验,x11是原方程的解,且当x11时,2x22,符合题意即教师甲每分钟能输入22名学生的成绩,教师乙每分钟能输入11名学生的成绩例27 甲乙两人做某种机器零件。已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等。求甲、乙每小时各做多少个?分析:甲每小时做x个零件,做90个零件所用的时间是(90 x) 小时,还可用式子 小时来表示。乙每小时做(x-6)个零件,做60个零件所用的时间是 60(x-6) 小时,还可用式子 小时来表示。 等量关系:甲所用时间=乙所用时间 三、【行程中的应用性问题】例3.1 甲、乙两个车站相距96千米,快车和慢车同时从甲站开出,1小时后快车在慢车前12千米,快车比慢车早40分钟到达乙站,快车和慢车的速度各是多少?分析:所行距离速度时间快车96千米x千米/小时慢车96千米(x-12)千米/小时等量关系:慢车用时=快车用时+ (小时)例3.2 甲、乙两地相距828km,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的1.5倍直达快车比普通快车晚出发2h,比普通快车早4h到达乙地,求两车的平均速度分析:这是一道实际生活中的行程应用题,基本量是路程、速度和时间,基本关系是路程= 速度时间,应根据题意,找出追击问题总的等量关系,即普通快车走完路程所用的时间与直达快车由甲地到乙地所用时间相等解:设普通快车车的平均速度为kmh,则直达快车的平均速度为1.5kmh,依题意,得=,解得,经检验,是方程的根,且符合题意,即普通快车车的平均速度为46kmh,直达快车的平均速度为69kmh评析:列分式方程与列整式方程一样,注意找出应用题中数量间的相等关系,设好未知数,列出方程不同之处是:所列方程是分式方程,最后进行检验,既要检验其是否为所列方程的解,要要检验是否符合题意,即满足实际意义例3.3 A、B两地相距87千米,甲骑自行车从A地出发向B地驶去,经过30分钟后,乙骑自行车由B地出发,用每小时比甲快4千米的速度向A地驶来,两人在距离B地45千米C处相遇,求甲乙的速度。分析:所行距离速度时间甲(87-45)千米x千米/小时乙45千米(x+4)千米/小时等量关系:甲用时间=乙用时间+ (小时)例3.4 一队学生去校外参观他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍若骑车的速度是队伍行进速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间? 解: 设步行速度为x千米时,骑车速度为2x千米时,依题意,得:方程两边都乘以2x,去分母,得30-15x,所以,x15检验:当x15时,2x2150,所以x15是原分式方程的根,并且符合题意,骑车追上队伍所用的时间为30分钟例3.5 农机厂职工到距工厂15千米的生产队检修农机,一部分人骑自行车先走,40分钟后,其余的人乘汽车出发,结果他们同时到达,已知汽车的速度是自行车的3倍,求两车的速度 解: 设自行车的速度为x千米/小时,那么汽车的速度为3x千米/小时,依题意,得: 解得x15经检验x15是这个方程的解当x15时,3x45即自行车的速度是15千米/小时,汽车的速度为45千米/小时例3.6 甲乙两人同时从一个地点相背而行,1小时后分别到达各自的终点A与B;若从原地出发,但是互换彼此的目的地,则甲将在乙到达A之后35分钟到达B,求甲与乙的速度之比。分析:等量关系:甲走OB的时间-乙走OA的时间=35分钟四、【轮船顺逆水应用问题】例41 轮船顺流、逆流各走48千米,共需5小时,如果水流速度是4千米/小时,求轮船在静水中的速度。分析:顺流速度=轮船在静水中的速度+水流的速度逆流速度=轮船在静水中的速度-水流的速度路程速度时间顺流48千米(x+4)千米/小时逆流48千米(x-4)千米/小时 等量关系:顺流用时+逆流用时=5(小时)例41 轮船在顺水中航行30千米的时间与在逆水中航行20千米所用的时间相等,已知水流速度为2千米时,求船在静水中的速度。分析:此题的等量关系很明显:顺水航行30千米的时间= 逆水中航行20千米的时间,即=设船在静水中的速度为千米时,又知水流速度,于是顺水航行速度、逆水航行速度可用未知数表示,问题可解决解: 设船在静水中速度为千米时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新传染病面试模拟题库
- 2026届昆明市第二中学化学高三第一学期期末学业质量监测试题含解析
- 产业发展阶段的动力学模型
- 场频光电融合技术
- 手部护理专业面试真题与解析:护肤知识应用与操作技巧
- 物流装备与技术
- 细胞组织器官
- 神经损伤的电生理学评估
- 欧莱雅年报解读
- 细胞表面受体
- 广西贺州市2022-2023学年八年级下册期末物理试卷(含答案)
- 台州市开发投资集团有限公司招聘笔试题库2024
- DL∕T 5344-2018 电力光纤通信工程验收规范
- 14生活日用品的联想 (教案)人美版美术四年级上册
- CH+8016-1995全球定位系统(GPS)测量型接收机检定规程
- DL-T5493-2014电力工程基桩检测技术规程
- 人教版2024年小学升学考试数学模拟测试卷(共5套)(含答案解析)
- 医院系统瘫痪应急预案
- 光伏项目技术标准清单
- 117湖南省怀化市雅礼实验学校2023-2024学年七年级下学期开学考试数学试题
- 输气管线破裂漏气应急处置方案
评论
0/150
提交评论