




免费预览已结束,剩余6页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课次教学计划(教案) 课题函数的单调性和奇偶性教学目标1. 通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;学会运用函数图像理解和研究函数的性质. 理解增区间、减区间等概念,掌握增(减)函数的证明和判别2. 结合具体函数,了解奇偶性的含义;学会运用函数图像理解和研究函数的性质. 理解奇函数、偶函数的几何意义,能熟练判别函数的奇偶性教学策略重点难点:理解函数的模型化思想,用集合与对应的语言来刻画函数教学策略:讲练结合,查漏补缺函数的单调性1.例1:观察y=x2的图象,回答下列问题问题1:函数y=x2的图象在y轴右侧的部分是上升的,说明什么?随着x的增加,y值在增加。问题2:怎样用数学语言表示呢?设x1、x20,+,得y1=f(x1), y2=f(x2).当x1x2时,f(x1) f(x2).结论:这时,说y1= x2在0,+上是增函数。(同理分析y轴左侧部分)由此可有:2.定义:一般地,设函数f(x)的定义域为I:如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1x2时都有f(x1) f(x2).那么就说f(x)在这个区间上是增函数(increasing function)。如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1f(x2).那么就是f(x)在这个区间上是减函数(decreasing function)。如果函数y=f(x)在某个区间是增函数或减函数,那么就说函说y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y=f(x)的单调区间,在单调区间上增函数的图象是上升的,减函数的图象是下降的。注意:(1)函数的单调性也叫函数的增减性;(2)注意区间上所取两点x1,x2的任意性;(3)函数的单调性是对某个区间而言的,它是一个局部概念。3.例2.己知函数f(x)x22x3,画出函数的图象;根据图象写出函数f(x)的单调区间;利用定义证明函数f(x)x22x3在区间(-,1上是增函数;当函数f(x)在区间(一,m上是增函数时,求实数m的取值范围.1、 用定义判断单调性:A 设且;B计算f(x)f(x)=几个因式的乘积形式C判断上述差的符号; D.下结论。如果,则函数是增函数;如果,则函数是减函数用定义法判断单调性1试用函数单调性的定义判断函数在区间(0,1)上的单调性.解:任取(0,1),且. 则. 由于,故,即. 所以,函数在(0,1)上是减函数. 【扩展】判断函数在的单调性,并用定义证明之判断函数在的单调性,并用定义证明之求单调区间1. 判断函数yx26x10在区间(2,4)的单调性_2. 已知,指出的单调区间_.根据图像判断单调性 (看图像,向上趋势的就是增函数,向下趋势的就是减函数;)1 已知函数(1) 画出该函数的图象;(2)写出函数的单调区间1已知点都在二次函数的图像上,则AB C D ( )根据单调性求参数的取值范围1.若函数在上为增函数,求实数a的取值范围_2. 如果函数在区间上为减函数,求实数a的取值范围3 设函数在区间上是增函数,求实数的取值范围。4.若与在区间上都是减函数,则的取值范围是_。5.若函数在上为增函数,则实数的取值范围是 ( ) .利用单调性判断函数值例6.己知函数y=f(x)在0,十)上是减函数,试比较f()与f(a2一a十1)的大小.函数的值域二、新知导航:1. 函数最大(小)值定义最大值:一般地,设函数的定义域为I,如果存在实数M满足:(1)对于任意的,都有;(2)存在,使得那么,称M是函数的最大值【例1】画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征? 2. 注意:函数最大(小)首先应该是某一个函数值,即存在,使得;函数最大(小)应该是所有函数值中最大(小)的,即对于任意的,都有利用函数单调性来判断函数最大(小)值的方法1(1)配方法 (2)换元法 (3)数形结合法【例2】求函数在区间2,6 上的最大值和最小值【例3】求函数的最大值三、经典范例:【例1】求函数的最大值.解:配方为,由,得.所以函数的最大值为8.【例2】1. 已知函数,求出函数的最值_;2. 已知函数,求出函数的最值_;3. 已知函数,求出函数的最值_;【扩展】 已知函数在上是减函数,在上是增函数,求实数m的值;并根据所求的m的值求函数在上的最值已知函数(1)写出该函数的单调区间;(2)求函数在区间上的最值已知函数(1)试讨论函数在上的单调性,并证明之;(2)由(1)试求函数在上的最值【例3】求函数的最小值. 解:此函数的定义域为,且函数在定义域上是增函数, 所以当时,函数的最小值为2.点评:形如的函数最大值或最小值,可以用单调性法研究,也可以用换元法研究.【另解】令,则,所以,在时是增函数,当时,故函数的最小值为2.【例4】求下列函数的最大值和最小值:(1); (2).解:(1)二次函数的对称轴为,即.画出函数的图象,由图可知,当时,; 当时,. 所以函数的最大值为4,最小值为.四、课堂练习1. 已知函数,下列说法中正确的是( )(A)函数有最大值2 (B)函数有最小值2(C)当时函数有最大值2 (D)当时函数有最大值22. 已知函数在上是减函数,在上是增函数,求实数m的值;并根据所求的m的值求函数在上的最值_3. 已知函数,求该函数的最值_4. 已知函数(1)写出该函数的单调区间;(2)求函数在区间上的最值6. 函数在区间上有最小值,则的取值范围是( ). A B C D 7. 的最大(小)值情况为( ). A. 有最大值,但无最小值 B. 有最小值,有最大值1 C. 有最小值1,有最大值 D. 无最大值,也无最小值8. 函数的最大值是 .9. 已知函数在区间0,1上的最大值为2,求实数a的值.函数的奇偶性1.回忆增函数、减函数的定义,并复述证明函数单调性的步骤。2.初中几何中轴对称,中心对称是如何定义的?轴对称:两个图形关于某条直线对称(即一个图形沿直线折叠,能够与另一图形重合)中心对称:两个图形关于某一点对称(即把一个图形绕某点旋转,能够与另一图形重合)这节课我们来研究函数的另外一个性质奇偶性1.偶函数(1)观察函数y=x2的图象(如右图)图象有怎样的对称性?从函数y=f(x)=x2本身来说,其特点是什么?当自变量取一对相反数时,函数y取同一值。例如:f(-2)=4, f(2)=4,即f(-2)=f(-2);f(-1)=1,f(1)=1,即 f(-1)= f(1),由于(-x)2=x2 f(-x)= f(x). 以上情况反映在图象上就是:如果点(x,y)是函数y=x2的图象上的任一点,那么,与它关于y轴的对称点(-x,y)也在函数y=x2的图象上,这时,我们说函数y=x2是偶函数。(2)定义:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)= f(x),那么函数f(x)就叫做偶函数(even function)。例如:函数,等都是偶函数。2.奇函数(1)观察函数y=x3的图象(投影2)当自变量取一对相反数时,它们对应的函数值有什么关系?也是一对相反数。这个事实反映在图象上,说明函数的图象有怎样的对称性呢?如果点(x,y)是函数y=x3的图象上任一点,那么与它关于原点对称的点(-x,-y)也在函数y=x3的图象上,这时,我们说函数y=x3是奇函数。(2)定义一般地,(板书)如果对于函数f(x)的定义域内任意一个x,都有 ,那么函数f(x)就叫做奇函数(odd function)。例如:函数都是奇函数。3.奇偶性如果函数f(x)是奇函数或偶函数,那么我们就说函数f(x)具有奇偶性。例1.判断下列函数的奇偶性。(1)f(x)=x3+2x; (2) f(x)=2x4+3x2; (3) f(x)=x2+2x+5;(4) f(x)=x2,x; (5) f(x)=; (6) f(x)=x+;分析: 这里主要是根据奇函数或偶函数的定义进行判断;函数中有奇函数,也有偶函数,但是还有些函数既不是奇函数也不是偶函数,唯有f(x)=0(xR或x(-a,a).a0)既是奇函数又是偶函数。 从函数奇偶性的定义可以看出,具有奇偶性的函数,首先其定义域关于原点对称;其次f(-x)= f(x)或f(-x)=- f(x)必有一成立。因此,判断某一函数的奇偶性时:首先看其定义域是否关于原点对称,若对称,再计算f(-x),看是等于f(x)还是等于-f(x),然后下结论;若定义域关于原点不对称,则函数没有奇偶性。例2、判断下列函数的奇偶性(1) ; (2) 判断下列分段函数的奇偶性(1) (2) f(x)=x|x|+x3 例3.函数f(x)x的图象关于() (判断图像性质)Ay轴对称B直线yxC坐标原点对称 D直线yx例4、已知函数y=f(x)在R上是奇函数,而且在是增函数。证明y=f(x)在上也是增函数。4.结论: 奇函数在两个对称区间内的单调性是相同的;偶函数在两个对称区间内的单调性是相反的;奇函数的图象关于原点对称,偶函数的图象关于Y轴对称;奇函数与偶函数的定义域关于原点对称.利用函数奇偶性的定义和性质求参数例1.若函数是奇函数,则 例2.若函数是奇函数,则3、如果定义在区间上的函数为奇函数,则=_4.已知函数,是偶函数,则 5.已知,其中为常数,若,则_ 6.若函数是偶函数,则的单调递减区间是_;7. 已知函数(1)若函数为奇函数,求实数a,b,c满足的条件;(2)若函数为偶函数,求实数a,b,c满足的条件【总结】若函数是奇函数,则_;若函数是偶函数,则_; 求函数表达式:2. 已知是偶函数,时,求时的解析式.解:作出函数的图象,其顶点为. 是偶函数, 其图象关于y轴对称. 作出时的图象,其顶点为,且与右侧形状一致, 时,.【扩展】若函数是奇函数,当时,试求函数在时的解析式若函数是奇函数,当时,试求函数的解析式判断抽象函数的奇偶性1.设是上的任意函数,下列叙述正确的是()是奇函数是奇函数是偶函数是偶函数2.设函数和分别是上的偶函数和奇函数,则下列结论一定成立的是( )A.是偶函数 B.是奇函数C. 是偶函数 D.是奇函数利用函数的图像比较函数值的大小例 定义在R上的偶函数满足:对任意的,有则的大小关系是_.利用奇偶图像判断单调性以及解不等式(数形结合)1. 若奇函数在3, 7上是增函数,且最小值是1,则它在上是( ).A. 增函数且最小值是1 B. 增函数且最大值是1 C. 减函数且最大值是1 D. 减函数且最小值是12.若为奇函数,且在(0,+)内是增函数,又,则的解集为_.3.已知奇函数的图象是两条直线的一部分(如图所示),其定义域为,则不等式的解集是( ) 1 1 A. B. C. D.题型5:抽象函数的单调性和奇偶性(一般是代入特殊值0,1)例1 已知函数的定义域是的一切实数,对定义域内的任意都有,且当时,(1)求证:是偶函数;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 低空经济与自动驾驶技术的协同发展
- 探索寓言的世界:小学三年级寓言故事教案
- 山中杂诗:诗词赏析与理解
- 销售公司劳动合同
- 世界地理区域知识考核题
- 2023年上海进才中学高一(下)5月考化学试题及答案
- 项目部抹灰班组施工合同
- 难忘的一次演讲比赛经历及其感悟的作文12篇
- 羽绒服活动方案
- 能源之战1500字7篇
- 我国未成年人犯罪的现状、成因及对策研究
- 小型农田水利灌溉工程施工组织设计(word共114页)
- 轧机主传动装置及主电机的选择
- 工程移交书及质量保修书水利工程
- 蓟中上元古界剖面研究生地质实习-中国科学院地质与地球物理研究所
- 管式加热炉温度控制系统设计++
- 水污染源自动监控系统运行作业指导书
- 载人氦气球观光游览项目商业实施计划书
- ASTM_A29/A29M热锻及冷加工碳素钢和合金钢棒
- 《阿斯图利亚传奇》古典吉他谱
- 化学学院526实验室事故的调查报告
评论
0/150
提交评论