




免费预览已结束,剩余41页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
概述 江铜化工(JTHG)第一章 概述第一节 装置概况江西铜业集团化工有限公司老系统硫酸装置设计生产能力为10万吨年,以德兴铜矿副产硫精矿为原料,采用氧化焙烧,干法除尘,稀酸酸洗净化和两转两吸接触法制酸工艺。本装置还具有高回收率和低“三废”排放等优点。总硫回收率期望值可达97(保证值为96.0以上),工艺流程采用了二转二吸制酸工艺,“3+1”四段转化,提高硫的利用率,使尾气中SO2及硫酸雾的排放指标低于大气污染物综合排放标准,净化工段20稀酸外运到大山厂和泗州厂做为选矿药剂使用,不外排;硫酸钡烧渣是优质铁精矿,直接销售给钢铁厂,达到综合利用的目的。鼓风机噪音采用消声、隔声及不设固定岗位等有效措施。本装置技术新、可靠性高,采用以下具有成功业绩的最新技术:DCS控制系统;阳极保护管壳式酸冷器;二吸塔用高效除雾器控制尾气排放带出酸沫等。现在建设的江西铜业(德兴)60万吨/年硫铁矿循环经济项目一期工程规模为30万吨/年,项目建成后,年产98%工业硫酸25万吨,105%发烟硫酸15万吨,优质铁精粉18.2万吨,余热发电量7800万度。计划于2012年6月竣工投产。第二节 硫酸及硫氧化物的性质1 硫酸的物理性质硫酸的分子量为98.078,分子式为H2SO4。从化学意义上讲,是三氧化硫与水的等摩尔化合物,即SO3H2O。在工艺技术上,硫酸是指SO3与H2O以任何比例结合的物质,当SO3与H2O的摩尔比1时,称为硫酸,它们的摩尔比1时,称为发烟硫酸。硫酸的浓度有各种不同的表示方法,在工业上通常用质量百分比浓度表示。硫酸的主要物理性质为:20时密度 g/cm3 1.8305熔点 10.37+0.05沸点 100% 275+598.479%(最高) 326+5气化潜热(326.1时),KJ/mol 50.124熔解热(100%), KJ/mol 10.726比热容(25), J/(g k) 98.5% 1.41299.22% 1.405100.39% 1.3941.1 外观特性 浓硫酸是无色透明液体,能与水或乙醇混合,暴露在空气中迅速吸收空气中的水份。 发烟硫酸是无色或微有颜色的粘稠状液体,敞口则挥发窒息性三氧化硫烟雾。1.2化学组成分子量:98.08 O分子式:H2SO4 分子结构: HO S OH O1.3密度 100%H2SO4在20时的密度为1.8305g/cm3,同一温度下,硫酸溶液的密度首先随它的浓度增加而增加,当浓度达到98.3时其密度达到最大值。当酸浓由98.3到100,随酸浓增大而下降,当为100%浓度时,出现密度的最小值(附表于后)。 发烟硫酸的密度随其中游离的SO3含量的增加而增加,达到62时密度为最大,以后随SO3含量增加密度减小,直到100%液体SO3。(附表于后)随着温度的升高,硫酸密度减小、体积增大,硫酸密度于是成为函数变量,其密度与浓度的关系见附表。表1-1:硫酸溶液的密度(20时)H2SO4含量密度克/厘米3SO3含量%总重量%重量克/升10106.61.06618.1620227.91.139416.3330365.51.218524.4940521.11.302832.6550697.61.395140.8060898.91.498248.957011271.610557.148013821.727265.319016331.814473.479517421.833777.559617621.835578.379717811.836479.189817991.836580.009918161.843280.8110018301.830581.63104.519811.90285.31表1-2硫酸密度与温度的关系 重量% 密度g /cm3温度110203040506070809093959697989910001.00751.07351.15101.23261.31791.41101.51541.62931.74821.83611.84901.85441.85601.85681.85681.85511.8517101.00691.07001.14531.22551.31031.40001.50671.61981.73761.82521.83841.84391.84571.84651.84551.84451.8409201.00561.06611.13911.21851.30281.39511.49821.61051.72021.81441.82791.83371.83551.83641.83651.83421.8305301.00221.6171.13351.21151.29631.38721.48981.60411.71701.80881.81761.82361.82581.82681.82651.82421.8205400.99861.06701.12751.20461.28781.37951.48161.59251.70691.79331.80741.81371.815711651.81671.81451.8108500.99441.05171.12151.119781.28061.37191.47351.58381.69711.78291.79741.80401.80601.80701.80721.80501.8015600.98951.04601.11531.19091.27321.36441.46561.57501.68731.77291.78761.79441.79561.79761.79781.79581.7926800.97791.03381.10211.77101.25981.13941.44971.55821.66801.75251.76811.77511.77731.77841.77871.77781.77651000.96451.02041.08851.16301.24461.33481.43441.54171.64031.73311.74851.75611.75861.76061.76091.76091.7607硫铁矿制酸主要工艺原理 江铜化工(JTHG)图1-1 SO3水溶液在40时的密度变化趋势图密度 g/cm3 2.22.01.81.61.41.21.0 0.80 20 40 60 80 100 120 40 60 80 100硫酸浓度H2SO4。 发烟硫酸浓度 SO3游离1.4粘度硫酸的粘度随温度的升高而降低。硫酸溶液与发烟硫酸的粘度随其浓度增加而升高,随温度提高而降低。表1-3 硫酸粘度与温度的关系数据硫酸浓度 %粘度(帕.秒)1520304050930.03170.02310.01560.01210.0084980.03490.02580.01710.01290.0094104.50.04740.03660.02880.02080.01281.5结晶温度 硫酸溶液的结晶温度随硫酸含量的不同而在一个较大的范围内波动。由于硫酸的结晶湿度随其浓度的不同有很大变化,为储存和运输方便,避免在冬季冻结或结晶,商品硫酸的浓度都规定为结晶浓度低的浓度,如化工公司的主产品硫酸为98%酸,其结晶浓度为-0.7 左右。表1-4 不同浓度硫酸结晶温度硫酸浓度%92.5939797.59898.5100104.5结晶温度-22-29-6.9-3.7-1.1+1.8+10.9+2.51.6 二氧化硫在硫酸及发烟硫酸中的溶解度二氧化硫在同一浓度的硫酸中其溶解度随温度的升高而降低。在不同浓度的硫酸中随浓度增高而降低,直到硫酸浓度83.3%最低。此后,酸浓增加时,则二氧化硫溶解度又逐渐增加。表1-5二氧化硫在硫酸及发烟硫酸中的溶解度硫酸浓度%H2SO4SO2溶解度(克/100克H2SO4)102030405080100755.702.462.041.501.150.560.42854.601.381.291.000.730.370.30904.723.041.961.491.160.620.37955.803.022.231.661.380.750.421006.993.822.722.021.720.990.54100.410.875.944.313.262.712.071.241.7 三氧化硫和水混合热硫酸溶解于水释放的热量称为溶解热。硫酸溶解于水,也可看作被水稀释,从这个意义上讲,这一过程产生的热效应也可称为稀释热。可以利用积分溶解热和微分溶解热计算硫酸稀释过程的热效应。在25条件下,将1 kgH2SO4溶解于n kg水中,生成(n1)kg浓度为C的溶液,此过程放出的热量称为C浓度H2SO4 的积分溶解热。微分溶解热是指将1kg水加到无限多浓度为C的硫酸中所放出的热量。由于硫酸的数量为无限多,加水后,可以认为其浓度不变。三氧化硫和水混合时,放出热量。此热效应称为三氧化硫和水的混合热。它与生成硫酸的浓度,混合温度有关。硫酸越稀,混合热越大。混合温度越高,混合热越大。 表1-6 三氧化硫和水的混合热 单位:kJmol SO3温度生成硫酸浓度80909810015123.9108.992.5087.8040129.0113.997.6092.9060132.7117.6101.396.7080136.4121.4105.1100.52硫酸的化学性质硫酸是一种强酸。作为二元酸,它有中性盐(硫酸盐)和酸式盐(硫酸氢盐)。硫酸中的硫原子具有最高原子价+6价,由于硫的原子价趋向于降低,所以硫酸具有氧化剂的性质。同时,依还原剂的不同,硫酸可以还原到SO2、S和H2S。稀硫酸中的硫原子通常不具有强烈的氧化性。稀硫酸只能氧化按电动序排列在氢左面的金属。例如,稀硫酸与锌反应,生成硫酸锌和氢。在这个反应中,锌是依靠氢离子的还原而氧化的,不是依靠硫原子价的改变。浓硫酸的强脱水性,对于有机物和人的皮肤有强烈的破坏使用。 浓硫酸与硝酸混合,组成硝化剂,广泛用于炸药、医药、染料和食品等工业生产。 2.1与金属反应,生成该金属的硫酸盐,故而硫酸对金属具有强烈的腐蚀性。 FeH2SO4FeSO4H22.2与金属氧化物直接作用,生成该金属盐,利用此法可以制取相应的金属盐。 Fe2O33 H2SO4Fe2(SO4)33H2O CuOH2SO4CuSO4H2O2.3与其他酸类的盐相互作用,生成新的酸类 2NaClH2SO4NaSO 42HCl Ca3(PO4)H2SO4=2H3PO 43CaSO42.4与氨作用,生成硫酸铵 2NH3H2SO4=(NH4)2SO42.5接触法生产硫酸 以硫铁矿或硫精矿为原料,经原料处理、沸腾焙烧制取SO2、炉气净化、SO2接触氧化成SO3、SO3吸收制成浓度不同的硫酸,其主要的化学反应如下:焙烧反应: 2FeS22FeS+S2 Q (1) S2O22SO2 Q (2) 4FeS7O24SO22Fe2O3Q (3) 3FeS5O23SO2Fe3O4Q (4) 二氧化硫接触氧化: SO21/2O2=SO3Q (5) 三氧化硫吸收: SO3H2O=H2SO4Q (6) 如果焙烧过程中床层温度低(400450),氧过量则会生成硫酸盐和三氧化硫: 2FeS27O2Fe2(SO4)3SO2 2SO2O2=2SO34 二氧化硫的性质二氧化硫(SO2)具有强烈刺激臭味,在常温下是无色气体。它的分子量为64.063。二氧化硫的主要物理性质如下: 冷暖温度, -10.02结晶温度, -15.48标准状态下的气体密度,g/L 2.9265标准状态下摩尔体积,L/mol 21.891从0到100 ,SO2气体的平均比热容,J/(gK) 0.6615液面上的蒸汽压,KPa 20时 330.2650时 841.1389蒸发潜热,-10时 389.650时 380.0820时 362.5430时 353.08在20的温度下,1体积的水可溶解40体积的二氧化硫并放出34.4Kj/mol的热量。随着温度的长高,二氧化硫在水中的溶解度降低。在硫酸溶液中,随着硫酸浓度的提高,二氧化硫溶解降低。当硫酸浓度为85.8%时,达到最小溶解度。随后,SO2的溶解度重新增加。二氧化硫气体容易液化。为了使二氧化硫充分液化,将干燥的气体SO2压缩到0.405Mpa(4atm),并进行冷却.也可以使用在常压下进行低温冷冻的办法使二氧化硫气体液化.液体二氧化硫对于许多无机化合物和有机化合物都具有良好的溶解能力。 二氧化硫在化学反应中可以作为氧化剂,也可以作为还原剂,可以生成氨的络合物和过渡金属的络合物。SO2在水溶液中成为七水物SO27H2O。在二氧化硫的水溶液中不存在亚硫酸,但是亚硫酸氢盐含有HSO3-离子,亚硫酸盐含有SO3-离子。 当亚硫酸盐与硫一起加热时,得到硫代硫酸盐。 在催化剂存在下。SO2与氧反应,生成三氧化硫。这个反应是接触法硫酸生产的基础。 5 三氧化硫的性质在室温和常压下未聚合的三氧化硫是液态。气态三氧化硫的分子量为80.062。三氧化硫的主要物理性质如下:临界常数 沸点, 44.8临界温度 218.3 密度(型20),g/cm3 1.920临界压力 MPa 8.49 比热容,J/(g)(2530) 3.22临界密度,g/cm3 0.633气态三氧化硫冷却到沸点以下可液化成无色透明液体。气体三氧化硫在空气中与水蒸气反应,于瞬间产生硫酸液滴悬浮于空气中而形成雾。SO3的各种聚合体与水的反应不那么强烈,在空气中形成少量烟雾,它们的碳化作用不强。液体SO3可以以任何比例与液体SO2混合。固体SO3溶解于液体二氧化硫中,不与SO2生成化学化合物。SO3与H2SO4可以以任何比例相混合。三氧化硫与水的反应分激烈,反应时放出大量反应热。三氧化硫可从动物和植物纤维中吸取水分,使它们脱水和焦化。三氧化硫是强氧化剂,在大多数氧化反应中,三氧化硫被还原为二氧化硫。6产品规格工业硫酸按国家标准GB534-2002符合下列要求项 目指 标优等品一等品合格品硫酸(H2SO4)含量,92.5或98.092.5或98.092.5或98.0灰份, 0.020.030.10铁(Fe)含量, 0.0050.010砷(As)含量, 0.00010.005汞(Hg)含量, 0.0010.01铅(Pb)含量, 0.0050.02透明度/mm 5050色度 /ml 1.02.07 硫酸主要用途化学工业上是制造化学肥料、无机盐、合成纤维、染料、医药和食品工业的原料;石油化工行业用于精制石油产品;国防工业上用于制造炸药、毒物、发烟剂等;冶炼工业上用于冶炼烟气酸洗;在纺织行业用于印染和漂白等。第三节 工艺流程及其控制特点采用的主要工艺流程为:氧化焙烧、酸洗净化、“31”两次转化、93酸干燥、98酸中温两次吸收、余热回收等工艺,并采用DCS系统进行自动控制。主要特点如下: (1) 采用氧化焙烧技术,提高硫的烧出率。 (2) 采用酸洗净化,以减少稀酸产出。 (3) 采用“31”四段转化,使SO2总转化率大于99.8%,保证尾气中的SO2达标排放。 (4) 采用93酸干燥炉气,98酸吸收SO3。 (5) 采用中温吸收,以抑制雾粒的形成并增大雾粒粒径以便除雾。 (6) 沸腾炉出口设置余热锅炉,回收余热产中压过热蒸汽用于发电。1 原料硫酸生产的原料主要有含硫铁矿和硫酸亚铁。2 焙烧工艺含硫2025%、含水5%的硫铁矿由焙烧炉的加料斗,通过皮带给料机连续均匀地送至沸腾炉,采用氧表控制沸腾炉出口氧含量,根据其氧含量对沸腾炉的加矿量进行调节。沸腾炉出口炉气SO2浓度13%,温度约950。该炉气经余热锅炉后,温度降至400,余热锅炉产生的中压过热蒸汽,供凝汽式汽轮发电机组发电。从余热锅炉出来的炉气进旋风除尘器、电除尘器进一步除尘,出电除尘器的炉气温度320,含尘量150mg/Nm3,然后进入净化工段。焙烧工序的主要流程为:“沸腾焙烧炉余热锅炉旋风除尘器电除尘器”流程。3 制酸工艺由电除尘器来的炉气,温度约320,进入动力波,用浓度约15%的稀硫酸除去一部分矿尘,然后进入填泡塔,进一步除去矿尘、砷、氟等有害物质。气体温度降至42以下,再经一级、二级电除雾器除去酸雾,出口气体中酸雾含量0.005g/Nm3。经净化后的气体进入干吸工段,在干燥塔前设有安全水封。从动力波出来的稀硫酸用斜管沉降器净化后,进入脱吸塔除去气体,再利用稀硫酸蒸发器移走多余的稀硫酸。脱吸塔为塔、槽一体结构,采用绝热蒸发,循环酸系统不设冷却器,热量由后面的稀酸板式换热器带走。填泡塔也为塔、槽一体结构,淋洒酸从填泡塔塔底循环槽流出,通过填泡塔循环泵打入填泡塔循环使用。整个净化系统热量由稀酸板式换热器带走。烟气净化采用稀酸洗涤绝热蒸发冷却工艺,采用一级动力波洗涤,其烟气净化流程为:焙烧工序出口烟气动力波洗涤器填料冷却塔一级电除雾器二级电除雾器。净化系统热量由填料冷却塔循环酸泵出口设置的稀酸板式换热器移走;为防止烟尘在洗涤循环酸中的富集,而影响烟气冷却净化效果,在动力波循环酸泵出口抽出部分循环酸进入斜板管沉降器,进行固液分离,上清液部分通过S02脱吸后进行稀酸蒸发,部分返回一级动力波洗涤器循环使用。 4 干吸工艺 自净化工段来的含SO2炉气,补充一定量空气,控制SO2浓度为8.5%进入干燥塔。气体经干燥后含水份0.1g/Nm3以下,进入二氧化硫鼓风机。干燥塔系填料塔,塔顶装有金属丝网除雾器。塔内用93%硫酸淋洒,吸水稀释后自塔底流入干燥塔循环槽,槽内配入由吸收塔酸冷却器出口串来的98%硫酸,以维持循环酸的浓度。然后经干燥塔循环泵打入干燥塔酸冷却器冷却后,进入干燥塔循环使用。增多的93%酸全部通过干燥塔循环泵串入一吸塔。经一次转化后的气体,温度大约为180,进入一吸塔,吸收其中的SO3,经塔顶的纤维除雾器除雾后,返回转化系统进行二次转化。经二次转化的转化气,温度大约为156,进入二吸塔,吸收其中的SO3,经塔顶的金属丝网除雾器除雾后,进入尾吸塔,最后通过烟囱达标排放。第一吸收塔和第二吸收塔均为填料塔,第一吸收塔和第二吸收塔共用一个酸循环槽,淋洒酸浓度为98%,吸收SO3后的酸自塔底流入吸收塔循环槽混合,加水调节酸浓至98%,然后经吸收塔循环泵打入吸收塔酸冷却器冷却后,进入吸收塔循环使用。增多的98%硫酸,一部分串入干燥塔循环槽,一部分作为成品酸经过成品酸冷却器冷却后直接输入成品酸贮罐。 5 转化工序经干燥塔金属丝网除沫器除沫后,SO2浓度为8.5%的炉气进入二氧化硫鼓风机升压后,经第III换热器和第I换热器换热至430,进入转化器。第一次转化分别经一、二、三段催化剂层反应和I、II、III换热器换热,转化率达到95.5%,反应换热后的炉气经省煤器降温至180,进入第一吸收塔吸收SO3后,再分别经过第IV和第II换热器换热后,进入转化器四进行第二次转化,总转化率达到99.85%以上,二次转化气经第IV 换热器换热后,温度降至156进入第二吸收塔吸收SO3。为了调节各段催化剂层的进口温度,设置了必要的副线和阀门。为了系统的升温预热方便,在转化器一段和四段进口设置了两台电炉。 6 软化水及发电装置 沸腾炉出口炉气温度950左右经余热锅炉换热,余热锅炉所产450、3.82MPa过热蒸汽进入抽凝式发电机组,发电后的冷凝水经过除氧器除氧后进入余热锅炉循环利用。余热锅炉用水采用 “多介质过滤器活性炭过滤器双级反渗透”的主体处理工艺,达标后软化水进入软化水箱,再由除氧水泵将水送至真空除氧器进行除氧。经除氧后的凝结水由锅炉给水泵回用,产生过热蒸汽后进入汽轮机主进汽口,供汽轮机做功发电。经汽轮机做功后的乏汽进入凝汽器冷凝成凝结水后,由凝结水泵送至真空除氧器再由锅炉给水泵将除氧后的冷凝水和补充水再次回用,完成一个汽水循环。7 过程控制特点 整个硫酸厂主要采用集散控制系统(DCS)来实现集中管理,分散控制。系统结构上应使数据采集功能和控制功能分布在各个不同的模块上,以有效地分散各种由于意外发生而造成对整个系统的危害。PID参数应能够自动整定。该系统具有丰富的运算控制功能,逻辑运算功能,极高的控制品质,便于集中监视和操作,监视直观清晰,系统扩散性好,易于改善控制方案,具有诊断和相应的保护功能。DCS供电要求设置不间断电源(UPS)。8 主要技术经济指标 序号项 目单 位指 标备 注1硫精矿水份%52入炉后含硫%20-253烧出率%98.54净化率%98.45吸收率% 99.96转化率%99.87总硫利用率%988灰渣残硫%0.59尾气中含SO2PPm20010尾气中含酸雾mg/Nm330第二章 硫铁矿制酸主要工艺原理第一节 沸腾焙烧工艺原理一、对原料的要求及沸腾焙烧工艺优点 1、我厂焙烧原料为德铜选矿副产品硫精砂,其主要成分为二硫化铁(FeS2)。原料硫精砂具有以下特点;粒度细,200目以下的颗粒()占98.2%。硫精砂水分含量()偏高约10%。品位高,含有效S()48.06%。要求原料(高品位硫铁矿)的水分、粒径、品位“三稳定” 。原料“三稳定”是沸腾焙烧稳态操作的前提。2、沸腾焙烧工艺优点(1)生产强度大;(2)脱硫率高;(3)炉气中二氧化硫浓度高,可达11%-13%;(4)不受原料限制;(5)结构简单,建造容易;(6)操作简单,易于全部自动化。二、焙烧反应基本原理1、硫铁矿焙烧主要化学反应 硫铁矿焙烧过程中的化学反应很多,但主要的是二硫化亚铁的燃烧反应。 4FeS2 + 11O2 = 2Fe2O3 + 8SO2 + 790.52千卡 (1)3FeS2 + 8O2 = Fe3O4 + 6SO2 +566千卡 (2)当炉内过剩空气量较多时,FeS2的燃烧反应主要按式(1)进行,所得矿渣主要成分是Fe2O3、呈红色;过剩空气量较少时,反应则主要按式(2)进行、所得矿渣主要成分是Fe3O4,呈黑色;当空气不足时,不但FeS燃烧不完全,单质硫也不能全部燃烧,到后面设备中冷凝成固体,即产生通常所说的升华硫。所以,硫铁矿焙烧是放热反应, 可以靠本身的反应热来维持所需的焙烧温度。 2、影响硫铁矿烧出率的主要因素 硫铁矿在炉内烧得透不透,是以烧出率这个指标来衡量的。烧出率是指矿石中所含的硫被烧出来的百分率。 在炉内矿石停留时间一定的条件下,燃烧过程的速度越快,矿石的硫分就烧得越完全,烧出率就越高。影响硫铁矿燃烧速度的因素主要为温度和矿石粒度。(1)、温度 温度对硫铁矿的燃烧速度影响很大,二硫化铁的分解反应在600以下进行得很慢,600以上逐渐加快,温度越高,分解越快。 二硫化铁分解出来的硫和一硫化铁随即与周围空气中的氧进行燃烧,其中硫的着火温度为248-261,因此,只要周围有充足的氧气,在不很高的温度条件下,它就可以燃烧得比较完全。而一硫化铁燃烧的反应速度则受温度影响较大。从理论上说,当硫铁矿达到某一温度即其着火点时,就开始燃烧。各种硫铁矿石的着火点要看它的成分、特性以及粒度大小而定。据研究,普通硫铁矿的着火点为402,磁硫铁矿为420。但是,在实际操作中,为了保证矿石有足够的燃烧速度(在低于矿石熔点的条件下,温度越高,它的燃烧速度越快),需要的炉温比矿石的着火点要高得多。生产实践表明,当炉温超过850时,一硫化铁燃烧反应才能进行得比较完全,矿渣残硫一般都能达到0.5%以下,900以上,残硫可达0.1-0.3%。如果炉温低于800,矿渣残硫便会增高。矿尘虽然粒度很小,容易燃烧,但因为它在炉内的停留时间通常只有几秒到几秒钟,较矿渣的停留时间短得多,所以矿尘的残硫更高。为了保证有较高的烧出率,炉温至少应维持在850以上,900-950更有利,但太高则有使矿渣熔结的危险。(2)、矿石粒度 硫铁矿的分解速度虽然与矿石粒度大小无关,但分解生成的一硫化铁的燃烧速度却与矿石的粒度有很大关系。因为一硫化铁的燃烧是一非均相过程,其燃烧速度除了受温度影响外,很大程度上取决于气固相间接触表面的大小,而接触表面的大小又取决于矿石粒度的大小。矿石粒度越小,单位重量矿石的接触表面越大,空气污染中的氧就能充分与矿粒表面接触,并易于达到矿粒的内部,生成的二氧化硫也能很快地离开,扩散到气流中去,即有较快的传递速度。如果矿石粒度过大,除减少接触面积外,在矿粒表面因燃烧反应生成的氧化铁薄膜层较厚,它阻碍氧分子向矿粒中心扩散。生成的二氧化硫也不能很快地离开,即减慢了传递速度,使在一定的停留时间内,硫铁矿中的硫来不及燃烧完全,因而排出的矿渣残硫增加。 但是,在实际生产中,并不要求矿石粒度越小越好。因为,入炉矿的粒度过小,非但增加原料破碎的工作量,而且,粒度越小,炉气带出的矿尘越多,增加净化负荷。粒度还受到沸腾炉焙烧强度的制约,粒度越小,炉的焙烧强度越低,其生产能力亦相应降低。如前所述,对于普通硫铁矿,粒度一般不大于3.5毫米筛孔即可。 我厂焙烧原料硫精砂是选矿副产品,粒度细(附粒度分布表)一硫化铁易烧出,残硫一般为0.2%左右。粒度(目)+120+200+275+400-400(干基%)0.061.7410.6930.0457.47三、沸腾炉的结构原理 硫酸厂的沸腾炉多采用圆筒炉身一次扩大型,炉体一般为钢壳,内衬耐火材料,它的内部结构批为四个主要部分:风室、分布板和风帽、沸腾层及其上部的燃烧空间,这几部分的构造和作用如下。1、风室 它由钢板焊制成圆锥形或圆筒形,鼓入沸腾炉的空气先经过它然后均匀地通过分布板上升至沸腾层。风室的主要作用是均匀分布气体,因此要有足够的容积,特别是空气进口位置与分布板之间要有足够的距离。2、分布板和风帽 分布板是带有圆孔的钢制花板,其上插有风帽。它具有一定的流体阻力,使空气在进入沸腾层时均匀地分布。为了保证在整个炉子截面上没有风吹不到的死角,风帽的排列要均匀,一般为六角形排列,最外两层可采用同心圆排列,间距为140-170毫米,风帽小孔必须仔细加工。3、沸腾层 沸腾层是矿石焙烧的主要空间,矿石从炉一侧加料口落下,进入沸腾层激烈燃烧,焙烧后得到的矿渣从另一侧排出炉外。通常把排渣口的高度看作是沸腾层的高度,一般为0.9-1.5米。加料口的高低与炉子是否容易冒烟有关,沸腾炉一般以加料口下端比溢流口高600-700毫米为合适。过低,则当炉子的负压不足时容易冒烟,恶化环境;过高,会造成一部分细矿在沸腾层以上悬浮焙烧,降低烧出率。 为了保证沸腾层内的温度条件,矿石焙烧所放出的反应热,除了一部分被炉气和矿渣带出外,多余的热量必须在焙烧过程中随时除去。在硫酸厂生产中,通常在相应沸腾层高度的炉壁上设置冷却水箱,以除去余热。4、沸腾层上部燃烧空间 在沸腾层上部有一段燃烧空间,其主要作用是延长炉气的停留时间,使从沸腾层内来不及燃烧的单质硫也在此空间进一步燃烧。在上部空间还设有二次、三次风装置,其目的是向炉内补充空气而使矿灰和单质硫在空间加速燃烧。四、沸腾炉操作原理1、温度 沸腾炉温度的特点就是床层温度的均匀性。由于沸腾层内各点的温差不大,而且只要局部条件改变,都可以调节整个床层温度的作用,控制比较容易。影响因素:(1)、硫分影响 硫铁矿燃烧发热量129CskJ/kg标硫。一般来讲,投入炉内原料中硫分增多,反应热增加,炉温上升。但在沸腾炉内常常会有两种反应过程:一种是在过剩空气充裕的条件下,生成Fe2O3红色渣反应,这一反应完全,当增加硫分时炉温会上升。另一种是过剩空气不足时,生成Fe3O4黑渣反应,这一反应常伴有一部分FeS生成,这时多投矿增加炉内硫分,燃烧反应不完全,一部分FeS2分解成FeS,需要吸收热量,因而炉温不仅不会上升反而会下降。在这种情况下,一旦遇到原料供应中断炉内氧过剩,大量Fe3O4和FeS被氧化,将可使温度骤升,如控制不当,便能造成高温结疤事故。可用增减矿量调节。(2)、风量 尤其在炉内焙烧反应不完全,炉渣大部呈Fe3O4状态时,增加风量,使反应热量增加,可使温度显著升高。如果炉内大部分已烧成Fe2O3反应较完全,则这时增加风量,炉温不仅不会上升反而会下降。为了保证炉内良好的沸腾条件,一般风量变动的范围并不是很大,而风量同炉内粒度的关系比它同温度的关系密切,因此操作上常常先抓主要矛盾,不轻易的随便去改变风量与炉料粒度间的平衡,所以多不采用调节风量来控制温度。 正常操作应注意四点:(1)在炉内反应不完全时,也就是大部分呈Fe3O4黑渣时,不要随便减少风量。因为减少风量,不仅会造成炉内焙烧反应更差,而且往往随着炉温下降,气流线速度敢将进一步降低,搞不好很容易造成炉内堆积或结疤,必须防止。(2)当炉内呈Fe2O3红渣状态时,就不宜再增加风量,如果这时再开大风量,炉温不仅不会上升而且将降低炉气SO2浓度,炉内平均粒度增粗,尔后减少风量时,就可能会造成炉内粗粒沉底,产生冷灰。(3)当炉温骤然升高时,一般不要开风或关风。开风,炉温还会增高,关风,炉内物料会结团,粒度增粗,严重时会“冰结”结疤而造成事故,一般须待温度正常后再作调节。(4)冷却介质影响:无论采用简接冷却装置还是采用汽化冷却设备,它的目的是在沸腾层内利用水或蒸汽介质将炉内多余的热量除去,借以维持一定的炉温。但操作中用它来调节炉温效果不大。但直接向炉内喷水,炉温显著降低。2、炉底压力, 主要考虑分布皿器和沸腾层的阻力。沸腾层阻力大小决定于静止料层的厚度和它的堆积重度。但同炉内流速无关。事实上流速的高低只能改变炉内沸腾层的空隙率和它膨胀比,并不能使料层阻力变化。(1)在炉料良好沸腾的范围内,风量大小虽不能决定沸腾层阻力的多少,当加大风量的时候,炉底压力立即上升到某一个值,然后逐步下降。在开风时炉底压力上升,主要是分布皿和炉内总阻力是随气速增加而增大的缘故。但开风后它可以使沸腾层高度增加,或者说使膨胀比R增大。这样必然使溢流排渣量增多,从而影响炉内料层厚度降低,随之下降到某个值,然后再使床层阻力慢慢上升。但炉子产生冷灰的情况下要反其道行之,主要考虑气体带出细灰量的多少了。(2)增加炉内的投矿量,也就是相当于增加炉内料层厚度,会使炉底压力升高,相反时也一样。但是炉内矿渣是大红色,且较粗,这时若增加投矿量,由于炉温增高,硫分的增加,矿渣流动性能变好,排渣量自行增大,炉底压力反会下降。(3)采用调节排渣口高度的方法,可以达到控制炉内料层厚度的目的,从而来掌握炉底压力的高低。 如果用控制出渣量的办法来调节,也就是采用间断排渣的方法来掌握炉底压力也是可以的,其负作用有易造成炉子操作波动,破坏正常操作条件。使操作者对炉子运行情况失去连续性的预调,因为排渣情况与操作控制密切有关。(4) 炉底压力,照理论上分析并不需要维持很高,因为当炉内料层厚度达200-300mm时就可形成正常的沸腾条件,即沸腾层高度大致可达400-500mm,然而实际操作中维持的条件远较此值为大。因为:a、沸腾层高一些,容易使沸腾状况稳定,便于操作控制。b、炉内热容量大,对温度调节和余热利用有利。c、矿料入炉较平稳,尤其大多采用集中进料的情况,它不会使炉内粒度在瞬间内起较大变化。d、对生产条件改变,如负荷的变化或原料品位、水分变化时,适应性强,不易发生原料堆积事故。e、当有部分空气分布装置损坏时(如少数风帽烧坏或堵塞)它仍可维持较平稳的运行,不致影响生产。副作用有:从气泡通过料层的运动来看,气泡厚度随着料层高度增加而增厚,小气泡在上升过程中逐步汇合成大气泡,故随料层增厚,由气泡产生和崩裂所引起的压降脉动增大,物料分层现象加重,从而影响料层的均匀混合。随着料层增厚,动力消耗增加。3、炉气SO2浓度 沸腾炉出口SO2浓度的高低,决定于炉内的硫量与空气量。具体如下:(1)、SO2浓度高低常常反应出炉内焙烧反应过程情况,通常反应生成红色矿渣Fe2O3时,炉气中SO2浓度是不会很高的,而生成黑气Fe3O4矿渣时,则炉内SO2浓度就不会很低。如果焙烧过程中控制一定的空气量,进行高负荷运行。那么原则上可接近理论最高SO2浓度数值。(2)、采用21%的含氧空气焙烧。炉气随SO2升高,O2含量下降。因此可利用氧浓来控制SO2气浓。(3)、大部分S分焙烧转变为SO2,但炉内含少量过剩O2,加上矿渣起催化作用,会产生少量SO3,而SO3随SO2上升而下降。(4)、随着炉气中SO2浓度升高,虽然SO3下降,但由于过剩O2减少,会产生升华硫,带入后续系统,造成不良后果,一般控SO2浓度为12.5-13.5%。(5)、SO2浓度高低多用调节矿量来控制。(6)、如炉出口矿灰呈黑色,炉底渣呈红色,可开大二次风减少炉底风。4、高硫矿的操作它的特点是发热量大,反应温度容易升高,加料量少。通常,它的风量调节要特别注意,不宜开得过大并掌握好炉内平均粒度的变化和压力的控制,如果不注意往往易将炉内料层吹薄,从而影响流化质量。这是使用富矿操作中的主要矛盾在高强度的扩散炉内使用富矿,往往上部温度很高,尤其开用二次风时,大量细矿粉在上部空间悬浮焙烧,使温度高达1000以上,加重了炉顶结构和炉气冷却的负荷,影响其寿命。通常适当调节二次风与炉底风量比,但会使沸腾层温度升高,调节不好,强度会有所降低。也可采用掺拌部分矿渣,降低原料含硫量。5、注意事项(1)、炉内负压过大,炉底压力不易升高,不宜开大炉底风,应先设法把系统抽气量减小。(2)、炉内喷水,由于炉气体积增大,易出现正压,有时水箱漏水或锅炉管局部泄漏也会造成正压。(3)、炉温一般与SO2气浓成正比。(4)、炉内维持黑渣操作,生产负荷较大,这时遇原料供应中断,炉温会出现剧升,炉底压力可能迅速下降,这时要迅速采用临时措施,向炉内喷水,把温度降下来,一定要等到水量逐渐减小,温度下降到900才可减风或停炉,并把喷水关死。(5)、遇到复杂情况一时难以掌握,譬如原料突然改变配比,含硫量与粒度相差很大,通常风量开大一些,矿减一些(如果炉底压力不低的话)等排渣颜色变红(棕红)再逐步调节风量矿量。(6)、降负荷时要先减矿再减风。第二节 炉气净化工艺原理一、炉气净化目的 焙烧工序送来的炉气,除含有大量的氮气(N2),二氧化硫(SO2)和氧气(O2)外,还含有一些固态和气态的有害物质。固态杂质是指在焙烧工序电收尘器出口没有被除下仍以固态形式存在的物质,通称尘。气态杂质通常有三氧化二砷(AS2O3)、氟化物、二氧化硒SeO2、三氧化硫(SO2),水蒸汽(H2O)、二氧化碳(CO2)和其它有色金属的氧化物,硫化物及这些金属的硫酸盐。炉气净化的目的就是除掉这些有害杂质。下面分析一下尘、砷、氟等主要杂质对催化剂、设备和成品酸质量的危害和影响。1、尘: 空塔入口含尘量的多少取决于电收尘器工况的好坏。通常在12g/N3M左右。尘的危害首先是会堵塞管道和设备,严重时会使生产根本无法进行。其次,它会覆盖催化剂表面,使催化剂结疤,活性下降,阻力增大,转化率降低。再其次,尘进入成品酸中杂质量增高,颜色变红或变黑,影响成品酸质量。2、砷: 砷在炉气中是以三氧化二砷(AS2O3)形态存在的。炉气中含砷量的多少与硫精矿含砷量有关。三氧化二砷是危害催化剂最严重的毒物,也影响成品酸质量。 三氧化二砷能在催化剂表面生成不挥发的五氧化二砷(AS2O3),覆盖催化剂表面使转化率降低。在温度低于550时,催化剂被砷饱和后,转化率下降到某一水平时继续通入含砷的炉气,转化率就不再继续下降。当温度高于550时,砷的氧化物则与五氧化二钒生成挥发性的化合物V2O5As2O5,使催化剂中的钒含量降低。挥发物在后面几段催化剂层中凝结下来,形成黑色硬壳,使阻力增大,转化率显著下降。砷进入成品酸会使硫酸在工业上的应用范围受到限制。3、氟:炉气中的氟大部分以氟化氢(HF)的形态存在,小部分以四氟化硅(SiF4)形态存在。氟化氢与二氧化硅(SiO2)会起化学反应生成四氟化硅(SiF4): 4HF+SiO2 SiF4+2H2O 四氟化硅遇水后又会反应放出氟化氢: SiF4+(x+2)H2O SiO2 XH2O+4HF 所以,氟化氢是腐蚀塔内瓷砖、填料瓷环和破坏催化剂载体(硅藻土的主要成分是二氧化硅)的严重毒物。氟进入成品酸也会影响硫酸的用途。4、水分。水份本身对催化剂无毒害作用。但要严格控制进入转化系统炉气中的水份含量,其主要原因是:(1)水份会稀释进入转化系统之前的酸沫和酸雾,会稀释沉积在设备和管道表面的硫酸,造成腐蚀。(2)水份含量增高,会使转化后三氧化硫气体的露点温度升高,在低于三氧化硫气体露点温度的设备内,都会有硫酸冷凝出来,温度高和溶度不定(接近100%或含有游离SO3)的硫酸对设备有强烈的腐蚀作用。(3)三氧化硫会与水蒸汽结合成硫酸蒸汽,在换热降温过程中以及在吸收塔的下部有可能生成酸雾,酸雾不易被捕集,会随尾气排出,不但使硫的损失增大。更严重的是污染了环境。(4)水份进入转化器,使催化剂粉化,阻力上升。因此,在实际生产中控制水份指标比控制酸雾指标更加重要。5、三氧化硫。炉气中的三氧化硫一般在0.3%左右。随着炉气温度的降低,三氧化硫会与水蒸汽结合生成硫酸蒸汽,继而冷凝生成酸雾。首先,酸雾因受机
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合成生物学技术赋能二醇型稀有人参皂苷合成:路径、挑战与突破
- 闵行协管员招聘网面试题及答案
- 基于2025年的农村饮水安全项目社会稳定风险评估与农村生态环境保护报告
- 2025年教师招聘之《幼儿教师招聘》综合提升测试卷附参考答案详解(满分必刷)
- 2025年教师招聘之《幼儿教师招聘》通关试题库及答案详解【名校卷】
- 2025年教师招聘之《幼儿教师招聘》考试题库及答案详解【历年真题】
- 2025年教师招聘之《幼儿教师招聘》综合提升试卷含答案详解【满分必刷】
- 教师招聘之《小学教师招聘》综合提升试卷(研优卷)附答案详解
- 押题宝典教师招聘之《小学教师招聘》模考模拟试题(a卷)附答案详解
- 内蒙古呼伦贝尔农垦拉布大林上库力三河苏沁农牧场有限公司招聘笔试题库附答案详解(典型题)
- GA/T 2000.7-2014公安信息代码第7部分:实有人口管理类别代码
- 2023年安徽国贸集团控股有限公司招聘笔试模拟试题及答案解析
- 初中作文指导-景物描写(课件)
- 医学人文与叙事课件
- 三年级美术上册《魔幻颜色》课件
- 部编版一年级上册语文全册优秀课件
- 《横》书法教学课件
- 工程项目进度管理-课件
- 土壤肥料全套课件
- 历史选择性必修1 国家制度与社会治理(思考点学思之窗问题探究)参考答案
- 中国铁路总公司《铁路技术管理规程》(高速铁路部分)2014年7月
评论
0/150
提交评论