




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2010年部分省市中考数学试题分类汇编 压轴题(四)23(安徽省)如图,已知,相似比为k(k1),且的三边长分别为a、b、c(abc),的三边长分别为、.(1)若c=a1,求证:a=kc;证(2)若c=a1,试给出符合条件的一对,使得a、b、c和、都是正整数,并加以说明;解(3)若b=a1,c=b1,是否存在使得k=2?请说明理由.解第23题图解:(1)证:,且相似比为又(3分)(2)解:取(8分)此时且(10分)注:本题也是开放型的,只要给出的和符合要求就相应赋分.(3)解:不存在这样的和.理由如下:若则又,(12分),而故不存在这样的和,使得(14分)注:本题不要求学生严格按反证法的证明格式推理,只要能说明在题设要求下的情况不可能即可.24(芜湖市 本小题满分14分)如图,在平面直角坐标系中放置一矩形ABCO,其顶点为A(0,1)、B(3,1)、C(3,0)、O(0,0)将此矩形沿着过E(,1)、F(,0)的直线EF向右下方翻折,B、C的对应点分别为B、C(1)求折痕所在直线EF的解析式;(2)一抛物线经过B、E、B三点,求此二次函数解析式;(3)能否在直线EF上求一点P,使得PBC周长最小?如能,求出点P的坐标;若不能,说明理由解:(2)设矩形沿直线向右下方翻折后,、的对应点为.,.此时需说明.6分设二次函数解析式为:抛物线经过、.得到解得.9分(3)能,可以在直线上找到点,连接.由于、在一条直线上,故的和最小,由于为定长,所以满足周长最小.10分设直线的解析式为:.12分.14分注:对于以上各大题的不同解法,解答正确可参照评分!26.( 重庆市綦江县) 已知:抛物线y=ax2+bx+c(a0)的图象经过点B(12,0)和C(0,-6),对称轴为x=2.(1)求该抛物线的解析式;(2)点D在线段AB上且AD=AC,若动点P从A出发沿线段AB以每秒1个单位长度的速度匀速运动,同时另一动点Q以某一速度从C出发沿线段CB匀速运动,问是否存在某一时刻,使线段PQ被直线CD垂直平分?若存在,请求出此时的时间t(秒)和点Q的运动速度;若不存在,请说明理由;(3)在(2)的结论下,直线x=1上是否存在点M,使MPQ为等腰三角形?若存在,请求出所有点M的坐标;若不存在请说明理由.解:方法一:抛物线过C(0,-6)c=6, 即y=ax2+bx6由 解得:a= ,b=该抛物线的解析式为y=x2x6 -3分方法二:A、B关于x=2对称A(8,0) 设y=a(x8)(x12) C在抛物线上 6=a8(12) 即a=该抛物线的解析式为:y=x2x6 -3分(2)存在,设直线CD垂直平分PQ, 在RtAOC中,AC=10=AD点D在对称轴上,连结DQ 显然PDC=QDC,-4分由已知PDC=ACDQDC=ACD DQAC -5分DB=ABAD=20-10=10DQ为ABC的中位线 DQ=AC=5 -6分AP=AD-PD=AD-DQ=10-5=5t=51=5(秒) 存在t=5(秒)时,线段PQ被直线CD垂直平分-7分在RtBOC中, BC=6 CQ=3 点Q的运动速度为每秒单位长度.-8分(3)存在 过点Q作QHx轴于H,则QH=3,PH=9在RtPQH中,PQ=3 -9分当MP=MQ,即M为顶点,设直线CD的直线方程为:y=kx+b(k0),则: 解得:y=3x-6当x=1时,y=3 M1(1, 3) -10分当PQ为等腰MPQ的腰时,且P为顶点.设直线x=1上存在点M(1,y) ,由勾股定理得:42+y2=90 即y=M2(1,) M3(1,) -11分当PQ为等腰MPQ的腰时,且Q为顶点.过点Q作QEy轴于E,交直线x=1于F,则F(1, 3)设直线x=1存在点M(1,y), 由勾股定理得:(y3)2+52=90 即y=3M4(1, 3) M5(1, 3) -12分综上所述:存在这样的五点:M1(1, 3), M2(1,), M3(1,), M4(1, 3),M5(1, 3).25(山东省滨州市 本题满分l0分)如图,四边形ABCD是菱形,点D的坐标是(0,),以点C为顶点的抛物线恰好经过轴上A、B两点(1)求A、B、C三点的坐标;(2)求过A、B、C三点的抛物线的解析式;(3)若将上述抛物线沿其对称轴向上平移后恰好过D点,求平移后抛物线的解析式,并指出平移了多少个单位?解:由抛物线的对称性可知AM=BM在RtAOD和RtBMC中,OD=MC,AD=BC,AODBMCOA=MB=MAl分设菱形的边长为2m,在RtAOD中,解得m=1 DC=2,OA=1,OB=3A、B、C三点的坐标分别为(1,0)、(3,0)、(2,) 4分设抛物线的解析式为y=(2)2+ 代入A点坐标可得=抛物线的解析式为y=(2)2+7分设抛物线的解析式为y=(一2)2+k代入D(0,)可得k=5 所以平移后的抛物线的解析式为y=(一2)2+59分平移了5一=4个单位l0分 26.(山东省烟台市 本题满分14分)如图,已知抛物线y=x2+bx3a过点A(1,0),B(0,3),与x轴交于另一点C.(1)求抛物线的解析式;(2)若在第三象限的抛物线上存在点P,使PBC为以点B为直角顶点的直角三角形,求点P的坐标;(3)在(2)的条件下,在抛物线上是否存在一点Q,使以P,Q,B,C为顶点的四边形为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由.解:(1)把A(1,0),B(0,3)代入y=x2+bx3a中,得1+b3a=0 3a=3 a=1解得b=2抛物线的解析式为y=x2+2x34分(2)令y=0,得x2+2x3=0,解得x1=3,x2=1点C(3,0)5分B(0,3)BOC为等腰直角三角形.CBO=456分过点P作PDy轴,垂足为D,PBBC,PBD=45PD=BD8分所以可设点P(x,3+x)则有3+x=x2+2x3,x=1,所以P点坐标为(1,4)10分(3)由(2)知,BCBP当BP为直角梯形一底时,由图象可知点Q不可能在抛物线上.若BC为直角梯形一底,BP为直角梯形腰时,B(0,3),C(3,0),直线BC的解析式为y=x311分直线PQBC,且P(1,4),直线PQ的解析式为y=(x+1)31即y=x512分 y=x5联立方程组得 y=x2+2x3解得x1=1,x2=213分x=2,y=3,即点Q(2,3)符合条件的点Q的坐标为(2,3)14分28(四川省成都市)在平面直角坐标系中,抛物线与轴交于两点(点在点的左侧),与轴交于点,点的坐标为,若将经过两点的直线沿轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线(1)求直线及抛物线的函数表达式;(2)如果P是线段上一点,设、的面积分别为、,且,求点P的坐标;(3)设的半径为l,圆心在抛物线上运动,则在运动过程中是否存在与坐标轴相切的情况?若存在,求出圆心的坐标;若不存在,请说明理由并探究:若设Q的半径为,圆心在抛物线上运动,则当取何值时,Q与两坐轴同时相切?解:(1)沿轴向下平移3个单位后恰好经过原点, ,。 将 代入,得。解得。 直线AC的函数表达式为。 抛物线的对称轴是直线解得抛物线的函数表达式为。(2)如图,过点B作BDAC于点D。 , 。过点P作PEx轴于点E,PECO,APEACO,解得点P的坐标为(3)()假设Q在运动过程中,存在与坐标轴相切的情况。 设点Q的坐标为。 当Q与y轴相切时,有,即。当时,得,当时,得, 当Q与x轴相切时,有,即当时,得,即,解得,当时,得,即,解得,。综上所述,存在符合条件的Q,其圆心Q的坐标分别为,。()设点Q的坐标为。当Q与两坐标轴同时相切时,有。由,得,即,=此方程无解。由,得,即,解得当Q的半径时,Q与两坐标轴同时相切。8(四川省泸州市本题满分l2分) 已二次函数及一次函数. (l)求该二次函数图象的顶点坐标以及它与轴的交点坐标; (2)将该二次函数图象在轴下方的部分沿轴翻折到轴上方,图象的其余部分不变,得到一个新图象,请你在图10中画出这个新图象,并求出新图象与直线有三个不同公共点时的值: (3)当时,函数的图象与轴有两个不同公共点,求的取值范围解:(1)二次函数图象的顶点坐标为,与轴的交点坐标为 (2)当直线位于时,此时过点, ,即。当直线位于时,此时与函数的图象有一个公共点。方程有一根,即当时,满足,由知,或。(3)当时,函数的图象与x轴有两个不同交点,应同时满足下列三方面的条件:方程的判别式=,抛物线的对称轴满足,当时,函数值,当时,函数值即,解得。当时,函数图象()的图象与轴有两个不同公共点26(重庆市江津区)如图,抛物线与轴交于两点A(1,0),B(1,0),与轴交于点C(1)求抛物线的解析式;(2)过点B作BDCA与抛物线交于点D,求四边形ACBD的面积;(3)在轴下方的抛物线上是否存在一点M,过M作MN轴于点N,使以A、M、N为顶点的三角形与BCD相似?若存在,则求出点M的坐标;若不存在,请说明理由解:(1)把A B代入得:解得:3分(2)令,得 4分OA=OB=OC= BAC=ACO=BCO=ABC =BDCA, ABD=BAC 过点D作DE轴于E,则BDE为等腰直角三角形令 ,则 点D在抛物线上 解得,(不合题意,舍去) DE=(说明:先求出直线BD的解析式,再用两个解析式联立求解得到点D的坐标也可)四边形ACBD的面积=ABOC +ABDE7分(说明:也可直接求直角梯形ACBD的面积为4)(3)存在这样的点M8分ABC=ABD= DBC=MN轴于点N, ANM=DBC =在RtBOC中,OB=OC= 有BC=在RtDBE中,BE=DE= 有BD= 设M点的横坐标为,则M 点M在轴左侧时,则() 当AMN CDB时,有即 解得:(舍去) 则() 当AMN DCB时,有即 解得(舍去) (舍去)10分 点M在轴右侧时,则 () 当AMN DCB时,有 解得(舍去) () 当AMN CDB时,有 即 解得:(舍去) M点的坐标为12分25(黄冈市15分)已知抛物线顶点为C(1,1)且过原点O.过抛物线上一点P(x,y)向直线作垂线,垂足为M,连FM(如图).(1)求字母a,b,c的值;(2)在直线x1上有一点,求以PM为底边的等腰三角形PFM的P点的坐标,并证明此时PFM为正三角形;(3)对抛物线上任意一点P,是否总存在一点N(1,t),使PMPN恒成立,若存在请求出t值,若不存在请说明理由.解:(1)a1,b2,c0(2)过P作直线x=1的垂线,可求P的纵坐标为,横坐标为.此时,MPMFPF1,故MPF为正三角形.(3)不存在.因为当t,x1时,PM与PN不可能相等,同理,当t,x1时,PM与PN不可能相等.26.( 湖南常德市)如图10,若四边形ABCD、四边形CFED都是正方形,显然图中有AG=CE,AGCE.(1)当正方形GFED绕D旋转到如图11的位置时,AG=CE是否成立?若成立,请给出证明;若不成立,请说明理由.(2)当正方形GFED绕D旋转到如图12的位置时,延长CE交AG于H,交AD于M.求证:AGCH;当AD=4,DG=时,求CH的长。ABCDEF图10GAD图11FEBCGADBCEFHM图12ABCDEFG图11解:(1)成立四边形、四边形是正方形,1分. 90-.2分BACDEFG12图12HPM. .3分 (2)类似(1)可得, 124分 又. . 即5分 解法一: 过作于,由题意有,,则1.6分而12,21.,即.7分在Rt中,,8分 而, 即,.9分再连接,显然有,. 所求的长为.10分BACDEFG12图12HPM解法二:研究四边形ACDG的面积过作于, 由题意有,.8分而以CD为底边的三角形CDG的高=PD=1,41+44=CH+4 1.=.10分注:本题算法较多,请参照此标准给分.25(上海市)如图9,在RtABC中,ACB90.半径为1的圆A与边AB相交于点D,与边AC相交于点E,连结DE并延长,与线段BC的延长线交于点P.(1)当B30时,连结AP,若AEP与BDP相似,求CE的长;(2)若CE=2,BD=BC,求BPD的正切值;(3)若,设CE=x,ABC的周长为y,求y关于x的函数关系式.图9 图10(备用) 图11(备用)解:(1)B30ACB90BAC60AD=AE AED60=CEPEPC30三角形BDP为等腰三角形AEP与BDP相似EAP=EPA=DBP=DPB=30AE=EP=1在RTECP中,EC=EP=(2)过点D作DQAC于点Q,且设AQ=a,BD=xAE=1,EC=2QC=3aACB90ADQ与ABC相似即,在RTADQ中解之得x=4,即BC=4过点C作CF/DPADE与AFC相似, ,即AF=AC,即DF=EC=2, BF=DF=2BFC与BDP相似,即:BC=CP=4tanBPD=(3)过D点作DQAC于点Q,则DQE与PCE相似,设AQ=a,则QE=1a且在RtADQ中,据勾股定理得:即:,解之得ADQ与ABC相似三角形ABC的周长即:,其中x022.(福州市 满分14分)如图1,在平面直角坐标系中,点B在直线上,过点B作轴的垂线,垂足为A,OA=5。若抛物线过点O、A两点。(1)求该抛物线的解析式;(2)若A点关于直线的对称点为C,判断点C是否在该抛物线上,并说明理由;(3)如图2,在(2)的条件下,O1是以BC为直径的圆。过原点O作O1的切线OP,P为切点(P与点C不重合),抛物线上是否存在点Q,使得以PQ为直径的圆与O1相切?若存在,求出点Q的横坐标;若不存在,请说明理由。解:(1)把、分别代入,得 解得 3分该抛物线的解析式为 4分(2)点在该抛物线上 5分理由:过点作轴于点,连结,设与相交于点点在直线上,点、关于直线对称, ,,,又轴,由勾股定理得, ,又, , 8分当时,点在抛物线上 9分(3)抛物线上存在点,使得以为直径的圆与相切过点作轴于点;连结;过点作轴于点,点是的中点,由平行线分线段成比例定理得,同理可得:点的坐标为 10分,为的切线又为的切线,四边形为正方形又,,12分设直线的解析式为把、分别代入,得 解得, 直线的解析式为 若以为直径的圆与相切,则点为直线与抛物线的交点可设点的坐标为 ,则有,整理得,解得点的横坐标为或14分24(日照市 本题满分10分)如图,在ABC中,AB=AC,以AB为直径的O交AC与E,交BC与D求证:(1)D是BC的中点;(2)BECADC;(3)BC2=2ABCE解:(1)证明
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 成功起跑线第13课我自信我快乐【爱自己是终身浪漫的开始】课件2025-2026学年北师大版(2015)初中心理健康七年级全一册
- 2026届江苏省无锡市锡中学实验学校九年级化学第一学期期中监测模拟试题含解析
- 精准农业种子采购与种猪健康养殖销售合同
- 矿山地质环境治理与矿山生态修复工程承包合同
- 城市更新项目私人宅基地买卖及安置补偿合同
- 教育培训机构合作合同续签及资源共享协议
- 离婚前财产分割及共同债务处理协议书
- 建筑材料销售合同签订与施工进度控制流程图
- 专干笔试考试题库及答案
- 驻马店叉车实操考试题及答案
- 面部桃花灸培训专业知识课件
- 应急预案试题及答案
- 人工智能在威胁情报中的应用-洞察及研究
- 2025年教科版(2024)小学科学二年级上册(全册)教学设计(附目录)
- 阳光体育大课间知识培训课件
- 2025年玉树州公安局面向社会公开招聘警务辅助人员(第二批)考试参考试题及答案解析
- 建筑工程临电监理细则
- 四川省绵阳市涪城区绵阳南山中学2025-2026学年高三上学期开学英语试题(含答案无听力音频有听力原文)
- 乡级增补叶酸培训课件
- 家庭劳动教育的制度性困境与教育主体重构研究
- 中国兵器工业集团校园招聘笔试经典考题含答案
评论
0/150
提交评论