




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2014年函数压轴题一、选择题1、(2014济宁第8题)“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根”请根据你对这句话的理解,解决下面问题:若m、n(mn)是关于x的方程1(xa)(xb)=0的两根,且ab,则a、b、m、n的大小关系是()AmabnBamnbCambnDmanb2、(2014年山东泰安)二次函数y=ax2+bx+c(a,b,c为常数,且a0)中的x与y的部分对应值如下表:X1013y1353下列结论:(1)ac0;(2)当x1时,y的值随x值的增大而减小(3)3是方程ax2+(b1)x+c=0的一个根;(4)当1x3时,ax2+(b1)x+c0其中正确的个数为()A4个B3个C2个D1个3、(2014年山东烟台)二次函数y=ax2+bx+c(a0)的部分图象如图,图象过点(1,0),对称轴为直线x=2,下列结论:4a+b=0;9a+c3b;8a+7b+2c0;当x1时,y的值随x值的增大而增大其中正确的结论有()A1个B2个C3个D4个 第3题 第4题 第5题 4、(2014威海)已知二次函数y=ax2+bx+c(a0)的图象如图,则下列说法:c=0;该抛物线的对称轴是直线x=1;当x=1时,y=2a;am2+bm+a0(m1)其中正确的个数是( )A1B2C3D45、(2014温州)如图,矩形ABCD的顶点A在第一象限,ABx轴,ADy轴,且对角线的交点与原点O重合在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k0)中k的值的变化情况是()A一直增大B一直减小C先增大后减小D先减小后增大6、(2014宁波)已知点A(a2b,24ab)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为( )A(3,7)B(1,7)C(4,10)D(0,10)7、(2014年山东泰安)已知函数y=(xm)(xn)(其中mn)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()ABCD8、(2014.福州)如图,已知直线分别与x轴,y轴交于A,B两点,与双曲线交于E,F两点. 若AB=2EF,则k的值是【 】A B1 C D xy 第8题 第9题 第10题 第11题 9、(2014. 泸州)如图,在平面直角坐标系中,P的圆心坐标是(3,a)(a3),半径为3,函数y=x的图象被P截得的弦AB的长为,则a的值是()A4BCD10(2014山东济南)如图,直线与轴,轴分别交于两点,把沿着直线翻折后得到,则点的坐标是() A B C D11.(2014黑龙江绥化)如图,过点O作直线与双曲线y=(k0)交于A、B两点,过点B作BCx轴于点C,作BDy轴于点D在x轴上分别取点E、F,使点A、E、F在同一条直线上,且AE=AF设图中矩形ODBC的面积为S1,EOF的面积为S2,则S1、S2的数量关系是()AS1=S2B2S1=S2C3S1=S2D4S1=S212.(2014济宁)“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根”请根据你对这句话的理解,解决下面问题:若m、n(mn)是关于x的方程1(xa)(xb)=0的两根,且ab,则a、b、m、n的大小关系是()AmabnBamnbCambnDmanb13.(2014山东济南)二次函数的图象如图,对称轴为若关于的一元二次方程(为实数)在的范围内有解,则的取值范围是A B C D1xy4 第13题 第14题 第15题 第16题 14.(2014山东淄博)如图,二次函数y=x2+bx+c的图象过点B(0,2)它与反比例函数y=的图象交于点A(m,4),则这个二次函数的解析式为()Ay=x2x2By=x2x+2 Cy=x2+x2Dy=x2+x+215.(2014四川南充)二次函数y=ax2+bx+c(a0)图象如图,下列结论:abc0;2a+b=0;当m1时,a+bam2+bm;ab+c0;若ax12+bx1=ax22+bx2,且x1x2,x1+x2=2其中正确的有()ABCD16.(2014年贵州安顺)如图,二次函数y=ax2+bx+c(a0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为1,3与y轴负半轴交于点C,在下面五个结论中:2ab=0;a+b+c0;c=3a;只有当a=时,ABD是等腰直角三角形;使ACB为等腰三角形的a值可以有四个其中正确的结论是 (只填序号)17.(2014广西贺州)已知二次函数y=ax2+bx+c(a,b,c是常数,且a0)的图象如图所示,则一次函数y=cx+与反比例函数y=在同一坐标系内的大致图象是()ABCD18.(2014年山东泰安)已知函数y=(xm)(xn)(其中mn)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()ABCD二、填空题1. (2014四川巴中)如图,直线y=x+4与x轴、y轴分别交于A、B两点,把A0B绕点A顺时针旋转90后得到AOB,则点B的坐标是 第1题 第2题 第3题 第4题 2. (2014年贵州黔东南)在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B(2,0)是x轴上的两点,则PA+PB的最小值为 3. (2014湖南永州)如图,已知直线l1:y=k1x+4与直线l2:y=k2x5交于点A,它们与y轴的交点分别为点B,C,点E,F分别为线段AB、AC的中点,则线段EF的长度为 4(2014四川成都)如图,在平面直角坐标系xOy中,直线y=x与双曲线y=相交于A,B两点,C是第一象限内双曲线上一点,连接CA并延长交y轴于点P,连接BP,BC若PBC的面积是20,则点C的坐标为 5. (2014株洲)直线y=k1x+b1(k10)与y=k2x+b2(k20)相交于点(2,0),且两直线与y轴围城的三角形面积为4,那么b1b2等于 6(2014舟山)过点(1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行则在线段AB上,横、纵坐标都是整数的点的坐标是 7. (2014山东济南)如图,和都是等腰直角三角形,,反比例函数在第一象限的图象经过点B,若,则的值为_.DCAxyB第21题图8. (2014遵义)如图,反比例函数(k0)的图象与矩形ABCO的两边相交于E,F两点,若E是AB的中点,SBEF=2,则k的值为 9. (2014陕西,)已知P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,若x2=x1+2,且 = +,则这个反比例函数的表达式为 10. (2014山东淄博)关于x的反比例函数y=的图象如图,A、P为该图象上的点,且关于原点成中心对称PAB中,PBy轴,ABx轴,PB与AB相交于点B若PAB的面积大于12,则关于x的方程(a1)x2x+ =0的根的情况是11(2014浙江绍兴,第15题5分)如图,边长为n的正方形OABC的边OA,OC在坐标轴上,点A1,A2An1为OA的n等分点,点B1,B2Bn1为CB的n等分点,连结A1B1,A2B2,An1Bn1,分别交曲线y=(x0)于点C1,C2,Cn1若C15B15=16C15A15,则n的值为 (n为正整数)12.(2014武汉)如图,若双曲线y=与边长为5的等边AOB的边OA,AB分别相交于C,D两点,且OC=3BD,则实数k的值为 13. ( 2014广西)如图,OABC是平行四边形,对角线OB在轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=和y=的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:=;阴影部分面积是(k1+k2);当AOC=90时,|k1|=|k2|;若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称其中正确的结论是(把所有正确的结论的序号都填上)14(2014菏泽)如图,平行于x轴的直线AC分别交抛物线y1=x2(x0)与y2=(x0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DEAC,交y2于点E,则= _15. (2014浙江绍兴)如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=(x6)2+4,则选取点B为坐标原点时的抛物线解析式是 三、解答题1.(2014山东威海)如图,已知抛物线y=ax2+bx+c(a0)经过A(1,0),B(4,0),C(0,2)三点(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出BDA的度数2.(2014山东潍坊)如图,抛物线y=ax2+bx+c(aO)与y轴交于点C(O,4),与x轴交于点A和点B,其中点A的坐标为(2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线Z与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标。3.(2014山东烟台)如图,在平面直角坐标系中,RtABC的顶点A,C分别在y轴,x轴上,ACB=90,OA=,抛物线y=ax2axa经过点B(2,),与y轴交于点D(1)求抛物线的表达式;(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;(3)延长BA交抛物线于点E,连接ED,试说明EDAC的理由4.(2014山东济南,第26题,9分)如图1,反比例函数的图象经过点A(,1),射线AB与反比例函数图象交与另一点B(1,),射线AC与轴交于点C,轴,垂足为D(1)求的值;(2)求的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线轴,与AC相交于N,连接CM,求面积的最大值 第26题图1ABCDOxy第26题图2ABCDOxyMNl.(2014年湖北咸宁23(10分))如图1,P(m,n)是抛物线y=1上任意一点,l是过点(0,2)且与x轴平行的直线,过点P作直线PHl,垂足为H【探究】(1)填空:当m=0时,OP=1,PH=1;当m=4时,OP=5,PH=5;【证明】(2)对任意m,n,猜想OP与PH的大小关系,并证明你的猜想【应用】(3)如图2,已知线段AB=6,端点A,B在抛物线y=1上滑动,求A,B两点到直线l的距离之和的最小值 ( 2014年河南) 23. (11分)如图,抛物线y=x2+bx+c与x轴交于A(1,0),B(5,0)两点,直线y=x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PFx轴于点F,交直线CD于点E.设点P的横坐标为m。(1)求抛物线的解析式;(2)若PE =5EF,求m的值;(3)若点E/是点E关于直线PC的对称点、是否存在点P,使点E/落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由。(2014四川内江,第28题,12分)如图,抛物线y=ax2+bx+c经过A(3.0)、C(0,4),点B在抛物线上,CBx轴,且AB平分CAO(1)求抛物线的解析式;(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;(3)抛物线的对称轴上是否存在点M,使ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由(2014四川南充,第25题,10分)如图,抛物线y=x2+bx+c与直线y=x1交于A、B两点点A的横坐标为3,点B在y轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PCx轴于C,交直线AB于D(1)求抛物线的解析式;(2)当m为何值时,S四边形OBDC=2SBPD;(3)是否存在点P,使PAD是直角三角形?若存在,求出点P的坐标;若不存在,说明理由(2014四川宜宾,第22题,10分)如图,一次函数y=x+2的图象与反比例函数y=的图象交于A、B两点,与x轴交于D点,且C、D两点关于y轴对称(1)求A、B两点的坐标;(2)求ABC的面积(2014四川宜宾,第24题,12分)如图,已知抛物线y=x2+bx+c的顶点坐标为M(0,1),与x轴交于A、B两点(1)求抛物线的解析式;(2)判断MAB的形状,并说明理由;(3)过原点的任意直线(不与y轴重合)交抛物线于C、D两点,连接MC,MD,试判断MC、MD是否垂直,并说明理由(2014甘肃白银,第28题12分)如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x23向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3(1)求点M、A、B坐标;(2)联结AB、AM、BM,求ABM的正切值(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为,当=ABM时,求P点坐标( 2014福建泉州,第22题9分)如图,已知二次函数y=a(xh)2+的图象经过原点O(0,0),A(2,0)(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60到OA,试判断点A是否为该函数图象的顶点?2014广西贺州,第26题12分)二次函数图象的顶点在原点O,经过点A(1,);点F(0,1)在y轴上直线y=1与y轴交于点H(1)求二次函数的解析式;(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=1交于点M,求证:FM平分OFP;(3)当FPM是等边三角形时,求P点的坐标(2014广西玉林市、防城港市,第26题12分)给定直线l:y=kx,抛物线C:y=ax2+bx+1(1)当b=1时,l与C相交于A,B两点,其中A为C的顶点,B与A关于原点对称,求a的值;(2)若把直线l向上平移k2+1个单位长度得到直线r,则无论非零实数k取何值,直线r与抛物线C都只有一个交点求此抛物线的解析式;若P是此抛物线上任一点,过P作PQy轴且与直线y=2交于Q点,O为原点求证:OP=PQ(2014年广东汕尾,第25题10分)如图,已知抛物线y=x2x3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线上,使得MAD的面积与CAD的面积相等,求点M的坐标;(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由(2014武汉,第25题12分)如图,已知直线AB:y=kx+2k+4与抛物线y=x2交于A,B两点(1)直线AB总经过一个定点C,请直接出点C坐标;(2)当k=时,在直线AB下方的抛物线上求点P,使ABP的面积等于5;(3)若在抛物线上存在定点D使ADB=90,求点D到直线AB的最大距离(2014邵阳,第26题10分)在平面直角坐标系xOy中,抛物线y=x2(m+n)x+mn(mn)与x轴相交于A、B两点(点A位于点B的右侧),与y轴相交于点C(1)若m=2,n=1,求A、B两点的坐标;(2)若A、B两点分别位于y轴的两侧,C点坐标是(0,1),求ACB的大小;(3)若m=2,ABC是等腰三角形,求n的值(2014四川自贡,第24题14分)如图,已知抛物线y=ax2x+c与x轴相交于A、B两点,并与直线y=x2交于B、C两点,其中点C是直线y=x2与y轴的交点,连接AC(1)求抛物线的解析式;(2)证明:ABC为直角三角形;(3)ABC内部能否截出面积最大的矩形DEFG?(顶点D、E、F、G在ABC各边上)若能,求出最大面积;若不能,请说明理由(2014浙江湖州,第23题分)如图,已知在平面直角坐标系xOy中,O是坐标原点,抛物线y=x2+bx+c(c0)的顶点为D,与y轴的交点为C,过点C作CAx轴交抛物线于点A,在AC延长线上取点B,使BC=AC,连接OA,OB,BD和AD(1)若点A的坐标是(4,4)求b,c的值;试判断四边形AOBD的形状,并说明理由;(2)是否存在这样的点A,使得四边形AOBD是矩形?若存在,请直接写出一个符合条件的点A的坐标;若不存在,请说明理由(2014湘潭,第26题)已知二次函数y=x2+bx+c的对称轴为x=2,且经过原点,直线AC解析式为y=kx+4,(1)求二次函数解析式;(2)若=,求k;(3)若以BC为直径的圆经过原点,求k(2014益阳)如图,直线y=3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x2)2+k经过点A、B,并与X轴交于另一点C,其顶点为P(1)求a,k的值;(2)抛物线的对称轴上有一点Q,使ABQ是以AB为底边的等腰三角形,求Q点的坐标;(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长(2014年江苏南京,第24题)已知二次函数y=x22mx+m2+3(m是常数)(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?(2014甘肃兰州,第28题12分)如图,抛物线y=x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(1,0),C(0,2)(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标(2014广东梅州,第23题11分)如图,已知抛物线y=x2x3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线上,使得MAD的面积与CAD的面积相等,求点M的坐标;(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 各类几何试题题库及答案
- 2025年网络培训题库及答案
- 五年级上册英语期中试卷及答案
- 高三数学考试试题及答案
- 能源审计考试题库及答案
- 稀油站试题及答案
- PS在线数字处理课件
- 中式烹调师试题库及答案
- DB61T 1208-2018 在用医用激光设备检验规范
- 小学模拟试题及答案
- 消防培训课件教学课件
- 信息技术-开学第一课(共17张课件)
- 先进制造技术 课件 第一章 先进制造技术概论
- 实际投资额审计报告模板
- 湖南省衡阳市2022-2023学年六年级下册数学期末测试试卷(含答案)
- 农村干部任期经济责任审计所需资料
- 商场超市火灾防范措施
- PVC地板卷材施工方案
- 能源电力行业团队建设工作方案
- 黄褐斑的护理查房
- 《中国老年骨质疏松症诊疗指南(2023)》解读-
评论
0/150
提交评论