




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
通信试验指导书(给学生) 信号的产生、时域变换及卷积计算 一、实验目的熟悉MATLAB画图指令及基本函数的调用、编写方法。 掌握用MATLAB实现信号的基本运算方法。 二、实验内容用MATLAB表示)(),(),(),(00nnnnnunu?。 2三角波f(t)如图所示,试利用MATLAB画出f(2t)和f(2-2t)以及?tdttfdttdf)(和的波形。 3.用MATLAB计算序列-20113和序列120-1的离散卷积。 三、实验预备知识stem和plot函数的用法()用stem画短的离散时间序列()用plot画连续时间信号已采样的近似图,或者画那些离散值个数难以控制增长的很长的离散时间信号。 ()与stem不同,plot用直线将相邻的各元素连接起来,故当时间标号取得是够细的话,用直线所连接的结果是该原始连续时间信号图形的一个好的近似。 几种典型信号的表示方法()单位脉冲序列k=-50:50;delta=zeros(1,50),1,zeros(1,50);stem(k,delta) (2)单位阶跃序列k=-50:50;uk=zeros(1,50),ones(1,51);stem(k,uk) (3)三角波生成f(t)t=-3:0.001:3;f=tripuls(t,4,0.5);plot(t,f1)信号的尺度变换、翻转、平移信号的翻转运算在使用时需要注意,其它运算较简单。 ()在信号翻转f(-t)和f-k运算中,函数的自变量乘以一个负号,在MATLAB中可以直接写出。 ()翻转运算在MATLAB中还可以利用fliplr(f)函数实现,而翻转后信号的坐标则可以由-fliplr(k)。 离散序列的差分与求和()差分?fk=fk=fk-1,在MATLAB中可以用y=diff(f)实现。 ()求和?21kkkkf与信号相加运算不同,求和运算是把k1到k2之间的所有样本fk加起来。 格式y=sum(f(k1:k2);连续信号的导数与积分()导数连续信号的微分也可以用diff(f)近似计算。 导数即:微分/dx例如y=)sin(2?x=2xcos(2x)可以由以下MATLAB语句近似实现h=0.001;x=0:h:pi;y=diff(sin(x.2)/h;()积分连续信号的定积分可由MATLAB中quad函数或quad8函数实现。 格式quad(function-name,a,b)其中function_name为被积分的函数名,a和b指定积分区间。 例如f=inline(x+2);Jf=quad(f,1,4); 四、实验步骤编写程序。 调试程序。 写出程序运行结果。 五、思考题编写阶跃信号、冲激信号时应注意哪些问题。 编程求任意两个数字序列的叠加时应注意哪些问题。 如何美化输出波形界面。 离散系统分析 一、实验目的熟悉离散时间系统的频域分析方法。 掌握离散时间系统频域分析的MATLAB实现方法。 二、实验内容三阶归一化的Butterworth低通滤波器的频率响应为1) (2) (2) (1)(23?jwjwjwjwH试画出系统的幅度响应)(jwH和相位响应)(w?。 已知RC电路如图所示,系统的频率相应为输入电压信号为f(t),输出信号为电阻两端的电压y(t)。 当RC=0.04,f(t)=cos5t+cos100t,-? 试求该系统的响应y(t)。 提示该系统的频率相应为)1212(j?1j?j?1)j(12?RCRCCRRUUH? 三、实验预备知识 1、利用MATLAB分析系统的频率特性,当系统的频率响应H(jw)是jw的有理式时,有)1()()()1()()()()() (1)2(a)1 (1)2(b)1(?MajwjwaNbjwjwbwAwBjwHMMNN?MATLAB信号处理工具箱提供的freqs函数可直接计算函数系统的频率响应。 格式H=freqs(b,a,w)说明()b是上式中分子多项式的系数;a是上式中分母多项式的系数。 ()w为需计算的H(jw)的抽样点。 (数组w中最少需包含两个w的抽样点)。 (3)abs(H)求幅度响应;angle(H)求相位响应 2、 四、实验步骤编写程序。 调试程序。 写出程序运行结果。 五、思考题总结连续时间系统的频响特性分析方法。 总结离散时间系统的频响特性分析方法。 抽样定理、调制定理 一、实验目的 1、加深理解抽样定理,熟悉Matlab下simulink的使用方法 2、掌握信号的幅度调制的方法,深刻理解信号调制的频谱变化。 3、学会使用MATLAB实现信号的调制及解调。 二、试验内容:1.用Matlab中simulink仿真模拟信号的抽样。 2.对时域信号f(t),如图所示,用)150*2?cos(t信号对其进行幅度调制(抑制载波幅度调制),利用MATLAB编程实现信号幅度调制,绘出时域、频域图形。 三、实验预备知识1.抽样定理一个频带限制在(0,f H)赫内的时间连续信号m(t),如果以秒的间隔对它进行等间隔(均匀)抽样,则m(t)将被所得到的抽样值完全确定。 抽样脉冲序列是一个周期性冲击序列,对连续时间信号进行取样可获得离散时间信号,取样器可看作一个乘法器,连续信号f(t)和开关函数s(t)在取样相乘后输出离散时间信号fs(t)。 如下图所示如果令取样信号通过低通滤波器,该滤波器的截止频率等于原信号频率的最高频率,那么取样信号中大于原信号最高频率的频率成分被滤去,而仅存原信号频谱的频率成分,这样低通滤波器的输出为得到恢复的原信号。 如当开关函数为周期性矩形脉冲,且脉冲宽度为,则原信号与取样信号的频谱图如下根据抽样定理,只有在抽样频率fs大于等于二倍的原信号频率fm时,取样信号的频谱才不会发生。 当抽样频率过低时将会发生频谱重叠,如下图这样将无法恢复原信号。 结果讨论抽样定理是模拟信号数字化传输的理论基础,它告诉我们如果对某一带宽的有限时间连续信号(模拟信号)进行抽样,且在抽样率达到一定数值时,根据这些抽样值可以在接收端准确地恢复原信号.也就是说,要传输模拟信号不一定传输模拟信号本身,只需传输按抽样定理得到的抽样值就可以了。 2傅立叶变换dtetfFtftj?()()(对t0cos?,傅立叶变换为)(?)(?cos000?t则ttfty0cos)()(?为对f(t)的幅度调制)(?)(?21)(?)(?*)(?2?1cos)(00000?FFFttf得出结论调制信号的频谱是将基带信号频谱的搬移。 四、实验步骤编写程序。 调试程序。 写出程序运行结果。 五、思考题如何使用抽样定理?总结幅度调制的基本原理。 应用FFT对信号进行频谱分析一实验目的1在理论学习的基础上,通过本次实验,加深对FFT的理解,熟悉FFT算法及其程序的编写。 2熟悉应用FFT对典型信号进行频谱分析的方法。 3了解应用FFT进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT。 二实验内容用FFT对如下典型信号进行离散傅里叶变换。 (1)高斯序列?elsenenxqpna0150) (2)( (2)衰减正弦序列?elsenfnenxn?b01502?sin)( (3)三角波序列?0?elsennnnnxc748301)( (4)反三角序列?0?elsennnnnxd743304)( 三、实验预备知识一个连续信号的频谱可以用它的傅立叶变换表示为?dtetxjXtjaa)()(2-1)如果对该信号进行理想采样,可以得到采样序列)()(nTxnxa?(2-2)同样可以对该序列进行Z变换,其中T为采样周期?n?nznxZX)()(2-3)当?jez?的时候,我们就得到了序列的傅立叶变换?n?nj?j?enxeX)()(2-4)其中?为数字角频率,和模拟域频率的关系为s fT/?(2-5)式中的s f是采样频率。 上式说明数字角频率是模拟频率对采样速率s f的归一化。 同模拟域的情况相似,数字角频率代表了序列值变化的速率,而序列的傅立叶变换称为序列的频谱。 序列的傅立叶变换和对应的采样信号频谱具有下式的对应关系?)2? (1)(TmjXTeXaj?(2-6)即序列的频谱是采样信号频谱的周期延拓。 从式(2-6)可以看出,只要分析采样序列的频谱,就可以得到相应的连续信号的频谱。 在各种信号序列中,有限长序列在数字信号处理中占有很重要的地位。 无限长的序列也往往可以用有限长序列来逼近。 对于有限长的序列我们可以使用离散傅立叶变换(DFT),这一变换可以很好的反映序列的频域特性,并且容易利用快速算法在计算机上实现。 当序列的长度为N时,定义DFT为?n?10)()(NnkNWnxkX(2-7)其中NjNeW?2?,它的反变换定义为?k?10) (1)(NnkNWkXNnx(2-8)令kNWz?,则有?n?N?10)()(NnkNkWzWnxzX(2-9)可以得到,kNWzzXkX?)()(,kNWz?是Z平面单位圆上幅角为kN?2?的点,就是将单位圆进行N等分以后第K个点。 所以,X(K)是Z变换在单位圆上的等距采样,或者说是序列傅立叶变换的等距采样。 时域采样在满足Nyquist定理时,就不会发生频谱混叠。 DFT是对序列傅立叶变换的等距采样,因此可以用于序列的频谱分析。 如同理论课教材所讨论的,在运用DFT进行频谱分析的时候可能有三种误差,即 (1)混叠现象从中可以看出,序列的频谱时采样信号频谱的周期延拓,周期是T?2,因此当采样速率不满足定理Nyquist,经过采样就会发生频谱混叠。 这导致采样后的信号序列频谱不能真实的反映原信号的频谱。 所以,在利用DFT分析连续信号频谱的时候,必须注意这一问题。 避免混叠现象的唯一方法是保证采样的速率足够高,使频谱交叠的现象不出现。 这告诉我们,在确定信号的采样频率之前,需要对频谱的性质有所了解。 在一般的情况下,为了保证高于折叠频率的分量不会出现,在采样之前,先用低通模拟滤波器对信号进行滤波。 (2)泄漏现象实际中的信号序列往往很长,甚至是无限长。 为了方便,我们往往用截短的序列来近似它们。 这样可以使用较短的DFT来对信号进行频谱分析。 这种截短等价于给原信号序列乘以一个矩形窗函数。 值得一提的是,泄漏是不能和混叠完全分离开的,因为泄漏导致频谱的扩展,从而造成混叠。 为了减少泄漏的影响,可以选择适当的窗函数使频谱的扩散减到最小。 (3)栅栏效应因为DFT是对单位圆上Z变换的均匀采样,所以它不可能将频谱视为一个连续函数。 这样就产生了栅栏效应,从某种角度看,用DFT来观看频谱就好像通过一个栅栏来观看一幅景象,只能在离散点上看到真是的频谱。 这样的话就会有一些频谱的峰点或谷点被“栅栏”挡住,不能被我们观察到。 减小栅栏效应的一个方法是在源序列的末端补一些零值,从而变动DFT的点数。 这种方法的实质是改变了真是频谱采样的点数和位置,相当于搬动了“栅栏”的位置,从而使得原来被挡住的一些频谱的峰点或谷点显露出来。 注意,这时候每根谱线所对应的频和原来的已经不相同了。 从上面的分析过程可以看出,DFT可以用于信号的频谱分析,但必须注意可能产生的误差,在应用过程中要尽可能减小和消除这些误差的影响。 四、实验步骤编写程序。 调试程序。 写出程序运行结果。 五思考题1实验原理要点。 2分析所得到的结果图形。 信号系统及系统响应 一、实验目的熟悉连续周期、非周期信号的频域分析方法及MATLAB编程实现方法。 掌握离散周期、非周期信号的频域分析方法及MATLAB编程实现方法。 二、实验内容试用MATLAB计算如图所示周期矩形波序列的DFS系数。 试画出9.0?时,?jj?eeF?11幅度频谱。 三、实验预备知识离散周期信号傅立叶级数DFS分析若设定DFS和1DFS的求和范围为0到N-1,?kfDFSmF?10NkmkNWkf (1)?mfIDFSkF?101NNmmkNWmF (2)NjNeW?2?则MATLAB提供的函数F=fft(f),可用来计算 (1)式定义的N个DFS系数。 说明信号的周期N由上式中序列f长度确定。 返回的序列F给出的是10?Nm时的DFS系数。 类似地,可用MATLAB提供的函数f=ifft(F)由DFS系数F(m)按 (2)式计算出时域信号fk。 ?2离散非周期信号的傅里叶变换当序列的DTFT可写成?je的有理多项式时,MATLAB SignalProcessing Toolbox中的fregz函数可用来计算DTFT的值。 另外MATLAB提供的abs,angle,real,imad等基本函数可用来计算DTFT的幅度,相位,实部,虚部。 设DTFT的有理多项式为)1()()()(1010?jNjjMjjjjeaeaaebebbeAeBeF?则freqz的调用形式为h=freqz(b,a,w) (2)说明()b和a分别为 (1)式中分子多项式和分母多项式函数的向量。 ,10Mbbbb?,10Naaaa?()W为抽样的频率点()在以 (2)式形式调用freqz函数时,W中至少要有2个频率点。 ()返回的值h就是DTFT在抽样点W上的值,H的值一般是复数。 注?K?kjjekfkfDTFTeF?deeFeFIDTFTkfkjjj)(2?1)(2?一般来说)(?jeF是实变量?的复值函数,可用实部和虚部将其表示为)(?jeF=)(?jReF+)(?jIejF,其中)(?jReF和)(?jIeF分别是)(?jeF的实部和虚部;也可用幅度和相位将)(?jeF表示为)(?jeF=|)(?jeF|)()(?je,其中|)(?jeF|和)(?分别为序列kf幅度谱和相位谱。 四、实验步骤编写程序。 调试程序。 写出程序运行结果。 五、思考题总结周期连续、离散信号的傅里叶级数分析方法。 总结非周期连续、离散信号的傅里叶变换分析方法。 数字图像的基本认识 一、实验目的1.熟悉不同类型图像的文件结构,掌握图像文件的读写过程。 2.掌握对图像的各种统计指标的计算方法。 二、实验原理1.图像的基本类型在计算机中,按照颜色和灰度的多少可以将图像分为二值图像、灰度图像和真彩色RGB图像。 2.离散卷积对于离散序列,其卷积可用与连续函数相类似的方法求得。 因此对于两个长度分别为m和n的序列和,其卷积公式为上式给出一个长度为的输出序列。 在数字图像上进行的离散卷积与连续卷积几乎具有对应的性质,都可用连续卷积来描述。 3.灰度直方图灰度直方图是灰度级的函数,描述的是图像中具有该灰度级的像素的个数,其横坐标是灰度级,纵坐标是该灰度出现的频率(像素的个数)。 值得注意的是,直方图只反映该图像中不同灰度值出现的频率,而未反映某一灰度值像素所在的位置;不同的图像可能有相同的直方图;一幅图像各子区的直方图之和就等于该图全图的直方图。 预备知识读取图像F=imread(e:图片.jpg)显示图像imshow(f)返回指定点的坐标和颜色值c rp=impixel(f)RGB彩色图像转换为灰度图像rgb2gray(x)灰度图像转换为二值图像im2bw(x)图像滤波(图像与模板卷积)imfilter(x1,w,replicate),或用P填充边界获得图像直方图imhist(f) 三、实验题目1.编制一个程序,读取位图并显示在屏幕上,将图像数据化并显示结果,学会如何返回指定点的像素坐标。 2.编制一个程序,将RGB彩色图像转换为灰度图像,将灰度图像转换为二值图像。 3.编制一个程序,实现二维离散卷积,用于对图像滤波。 4.编制一个程序,对任意图像统计灰度值,并在屏幕上绘出直方图。 四、实验步骤编写程序。 调试程序。 写出程序运行结果。 五、实验要求1.提交题目 1、 2、 3、4的源程序清单。 2.提交题目4的原始图像和直方图结果。 数字图像处理中的基本运算 一、实验目的1.理解点运算、代数运算、几何运算的概念。 2.掌握灰度变换、几何变换的基本方法。 二、实验原理1.点运算在图像处理中,点运算是简单却很重要的一类技术,它们能让用户改变图像数据占据的灰度范围。 对于一幅输入图像,经过点运算将产生一幅输出图像,输出图像中每个像素的灰度值仅由相应输入像素的值决定。 因此,点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初级管道考试试题及答案
- 2025年英语基础及写作真题答案
- 广州房屋租赁合同
- 液化空气储能空分项目成本控制与预算管理方案
- 园艺植物配置与选育方案
- 污水管网提升改造施工方案
- 离婚子女抚养费支付及子女成长环境维护协议范本
- 水产养殖知识产权补充协议含多款养殖技术专利
- 《情感纠葛的终结与重生:离婚协议情感小说》
- 纳米技术科研人员聘用合同及项目研发合作协议
- 大学门户网站及站群管理系统规划与建设指南
- 车辆引导手势培训课件
- 中学生青春期恋爱教育主题班会
- 货运装载工作管理制度
- 2025至2030年中国社区团购行业市场全面调研及发展趋势研究报告
- 自控仪表试题及答案
- CJ/T 391-2012生活垃圾收集站压缩机
- 征拆工作面试题及答案
- 2025年成都市中考历史试题卷(含答案)
- 健康项目商业计划书5范文
- 2025年广东省中考地理试卷(含2025年答案及考点分析)
评论
0/150
提交评论