



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2016-2017学年度明德高一数学周练试卷 11.23 总分90分试题命制 吴新平 审核 庄元奋一、填空题(每题5分,共计60分)1、2、与终边相同的角的集合 3、已知扇形的半径为10,圆心角为,则扇形的面积为 4、已知角的终边经过点,则 5、已知,则6、已知是第二象限角,且,则 7、已知,则 8、已知tan=3,则的值是9、角的终边经过点,则sin()10、若角的终边经过点 P(1,2),则sin2cos2= 11、已知扇形的圆心角,半径r=3,则扇形的弧长l为12、已知为第四象限,sin=,则tan=1、 2、 3、 4、 5、 7、 8、 9、 10、 11、 12、 二、解答题13、(本题10分)已知,其中0x(1)求cos x的值;(2)求的值14、(本题10分)(1)已知,计算(2)化简:(3)已知求;15、(本题10分)已知sin cos ,0,求下列各式的值(1)tan ;(2) sin 22sin cos 3cos 22016-2017学年度明德高一数学周练试卷 11.23 总分90分试题命制 吴新平 审核 庄元奋一、填空题(每题5分,共计60分)1、2、与终边相同的角的集合 3、已知扇形的半径为10,圆心角为,则扇形的面积为 4、已知角的终边经过点,则 5、已知,则6、已知是第二象限角,且,则 7、已知,则 【答案】8、已知tan=3,则的值是29、角的终边经过点,则sin()10、若角的终边经过点 P(1,2),则sin2cos2=11、已知扇形的圆心角,半径r=3,则扇形的弧长l为212、已知为第四象限,sin=,则tan=二、解答题13、(本题10分)已知,其中0x(1)求cos x的值;(2)求的值解(1)因为sin 2x cos2 x1,所以cos 2x1sin2 x1()2 2分 又因为0x,故cos x0,所以cos x 4分 (2)原式 7分 14、(本题10分)(1)已知,计算(2)化简:(3)已知求;解:(1)(5分) (2)(10分) (3)(15分)15、(本题10分)已知sin cos ,0,求下列各式的值(1)tan ;(2) sin 22sin cos 3cos 2解:(sin cos )2(sin cos )22, sin 0cos ,sin cos , sin , cos ,(1) ta
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全学科视域下思辨性阅读能力的提升策略
- 2025成都入学考试真题及答案
- 2025成都法院考试真题及答案
- 2025超声副高考试真题及答案
- 照明设备选型与配置方案
- 公路交通流量分析与管理方案
- 供水厂及管网建设项目技术方案
- 全国书法绘画竞赛试题及答案
- 特种设备安全技术规范试题及答案
- 2025财经法规考试真题及答案
- 五年(2021-2025)高考语文真题分类汇编:专题03 文学类文本阅读(小说)(全国)(原卷版)
- 2025年黑龙江吉林辽宁内蒙古高考物理真题(原卷版)
- 2025四川数据集团有限公司第二批员工招聘3人笔试历年参考题库附带答案详解
- 2025保密教育线上培训考试题含答案完整版
- 《田螺姑娘》儿童故事ppt课件(图文演讲)
- Q-SY 08805-2021 安全风险分级防控和隐患排查治理双重预防机制建设导则
- 气瓶安全日管控、周排查、月调度制度(含记录)+气瓶安全总监职责+气瓶安全员守则
- 高边坡变形类型原因及防治对策
- 1844年经济学哲学手稿课件
- 新人教统编版七年级上册历史 第13课 东汉的兴衰 教学课件
- 装配式装修VS传统装修
评论
0/150
提交评论