matlab代码--数值积分.doc_第1页
matlab代码--数值积分.doc_第2页
matlab代码--数值积分.doc_第3页
matlab代码--数值积分.doc_第4页
matlab代码--数值积分.doc_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数值积分1. CombineTraprl复合梯形公式求积分function I,step = CombineTraprl(f,a,b,eps)%f 被积函数%a,b 积分上下限%eps 精度%I 积分结果%step 积分的子区间数if(nargin =3) eps=1.0e-4;endn=1;h=(b-a)/2;I1=0;I2=(subs(sym(f),findsym(sym(f),a)+subs(sym(f),findsym(sym(f),b)/h;while abs(I2-I1)eps n=n+1; h=(b-a)/n; I1=I2; I2=0; for i=0:n-1 x=a+h*i; x1=x+h; I2=I2+(h/2)*(subs(sym(f),findsym(sym(f),x)+subs(sym(f),findsym(sym(f),x1); endendI=I2;step=n; 2. IntSimpson用辛普森系列公式求积分function I,step = IntSimpson(f,a,b,type,eps)%type = 1 辛普森公式%type = 2 辛普森3/8公式%type = 3 复合辛普森公式if(type=3 & nargin=4) eps=1.0e-4; %缺省精度为0.0001endI=0;switch type case 1, I=(b-a)/6)*(subs(sym(f),findsym(sym(f),a)+. 4*subs(sym(f),findsym(sym(f),(a+b)/2)+. subs(sym(f),findsym(sym(f),b); step=1; case 2, I=(b-a)/8)*(subs(sym(f),findsym(sym(f),a)+. 3*subs(sym(f),findsym(sym(f),(2*a+b)/3)+ . 3*subs(sym(f),findsym(sym(f),(a+2*b)/3)+subs(sym(f),findsym(sym(f),b); step=1; case 3, n=2; h=(b-a)/2; I1=0; I2=(subs(sym(f),findsym(sym(f),a)+subs(sym(f),findsym(sym(f),b)/h; while abs(I2-I1)eps n=n+1; h=(b-a)/n; I1=I2; I2=0; for i=0:n-1 x=a+h*i; x1=x+h; I2=I2+(h/6)*(subs(sym(f),findsym(sym(f),x)+. 4*subs(sym(f),findsym(sym(f),(x+x1)/2)+. subs(sym(f),findsym(sym(f),x1); end end I=I2; step=n;end 3. NewtonCotes用牛顿科茨系列公式求积分function I = NewtonCotes(f,a,b,type)%type = 1 科茨公式%type = 2 牛顿科茨六点公式%type = 3 牛顿科茨七点公式I=0;switch type case 1, I=(b-a)/90)*(7*subs(sym(f),findsym(sym(f),a)+. 32*subs(sym(f),findsym(sym(f),(3*a+b)/4)+. 12*subs(sym(f),findsym(sym(f),(a+b)/2)+. 32*subs(sym(f),findsym(sym(f),(a+3*b)/4)+7*subs(sym(f),findsym(sym(f),b); case 2, I=(b-a)/288)*(19*subs(sym(f),findsym(sym(f),a)+. 75*subs(sym(f),findsym(sym(f),(4*a+b)/5)+. 50*subs(sym(f),findsym(sym(f),(3*a+2*b)/5)+. 50*subs(sym(f),findsym(sym(f),(2*a+3*b)/5)+. 75*subs(sym(f),findsym(sym(f),(a+4*b)/5)+19*subs(sym(f),findsym(sym(f),b); case 3, I=(b-a)/840)*(41*subs(sym(f),findsym(sym(f),a)+. 216*subs(sym(f),findsym(sym(f),(5*a+b)/6)+. 27*subs(sym(f),findsym(sym(f),(2*a+b)/3)+. 272*subs(sym(f),findsym(sym(f),(a+b)/2)+. 27*subs(sym(f),findsym(sym(f),(a+2*b)/3)+. 216*subs(sym(f),findsym(sym(f),(a+5*b)/6)+41*subs(sym(f),findsym(sym(f),b);end4. IntGauss用高斯公式求积分function I = IntGauss(f,a,b,n,AK,XK)if(n5 & nargin = 4) AK = 0; XK = 0;else XK1=(b-a)/2)*XK+(a+b)/2); I=(b-a)/2)*sum(AK.*subs(sym(f),findsym(f),XK1);endta = (b-a)/2;tb = (a+b)/2;switch n case 0, I=2*ta*subs(sym(f),findsym(sym(f),tb); case 1, I=ta*(subs(sym(f),findsym(sym(f),ta*0.5773503+tb)+. subs(sym(f),findsym(sym(f),-ta*0.5773503+tb); case 2, I=ta*(0.55555556*subs(sym(f),findsym(sym(f),ta*0.7745967+tb)+. 0.55555556*subs(sym(f),findsym(sym(f),-ta*0.7745967+tb)+. 0.88888889*subs(sym(f),findsym(sym(f),tb); case 3, I=ta*(0.3478548*subs(sym(f),findsym(sym(f),ta*0.8611363+tb)+. 0.3478548*subs(sym(f),findsym(sym(f),-ta*0.8611363+tb)+. 0.6521452*subs(sym(f),findsym(sym(f),ta*0.3398810+tb). +0.6521452*subs(sym(f),findsym(sym(f),-ta*0.3398810+tb); case 4, I=ta*(0.2369269*subs(sym(f),findsym(sym(f),ta*0.9061793+tb)+. 0.2369269*subs(sym(f),findsym(sym(f),-ta*0.9061793+tb)+. 0.4786287*subs(sym(f),findsym(sym(f),ta*0.5384693+tb). +0.4786287*subs(sym(f),findsym(sym(f),-ta*0.5384693+tb)+. 0.5688889*subs(sym(f),findsym(sym(f),tb);end 5. IntGaussLada用高斯拉道公式求积分function I = IntGaussLada(f,a,b,n,AK,XK)if(n6 & nargin = 4) AK = 0; XK = 0;else XK1=(b-a)/2)*XK+(a+b)/2); I=(b-a)/2)*(2/n/n)*subs(sym(f),findsym(sym(f),a)+. sum(AK.*subs(sym(f),findsym(sym(f),XK1);endta = (b-a)/2;tb = (a+b)/2;switch n case 2, I=ta*0.5*subs(sym(f),findsym(sym(f),ta*(-1)+tb)+. 1.5*ta*subs(sym(f),findsym(sym(f),ta*(1/3)+tb); case 3, I=ta*(2/9)*subs(sym(f),findsym(sym(f),ta*(-1)+tb)+. 0.752806*subs(sym(f),findsym(sym(f),ta*(-0.289898)+tb)+. 1.024972*subs(sym(f),findsym(sym(f),ta*0.689898+tb); case 4, I=ta*(0.125*subs(sym(f),findsym(sym(f),ta*(-1)+tb)+. 0.657689*subs(sym(f),findsym(sym(f),-ta*0.575319+tb)+. 0.776387*subs(sym(f),findsym(sym(f),ta*0.181066+tb)+. 0.440925*subs(sym(f),findsym(sym(f),ta*0.822824+tb); case 5, I=ta*(0.08*subs(sym(f),findsym(sym(f),ta*(-1)+tb)+. 0.446207*subs(sym(f),findsym(sym(f),-ta*0.720480+tb)+. 0.623653*subs(sym(f),findsym(sym(f),-ta*0.167181+tb)+. 0.562712*subs(sym(f),findsym(sym(f),ta*0.446314+tb)+. 0.287427*subs(sym(f),findsym(sym(f),ta*0.885792+tb); end6. IntGaussLobato用高斯洛巴托公式求积分function I = IntGaussLobato(f,a,b,n,AK,XK)if(n7 & nargin = 4) AK = 0; XK = 0;else XK1=(b-a)/2)*XK+(a+b)/2); I=(b-a)/2)*(2/n/(n-1)*(subs(sym(f),findsym(sym(f),a)+. subs(sym(f),findsym(sym(f),b)+sum(AK.*subs(sym(f),findsym(sym(f),XK1);endta = (b-a)/2;tb = (a+b)/2;switch n case 3, I=ta*(1/3)*(subs(sym(f),findsym(sym(f),a)+. subs(sym(f),findsym(sym(f),b)+1.333333*subs(sym(f),findsym(sym(f),tb); case 4, I=ta*(1/6)*(subs(sym(f),findsym(sym(f),a)+. subs(sym(f),findsym(sym(f),b)+0.833333*. (subs(sym(f),findsym(sym(f),ta*0.447214+tb)+. subs(sym(f),findsym(sym(f),-ta*0.447214+tb); case 5, I=ta*(1/10)*(subs(sym(f),findsym(sym(f),a)+. subs(sym(f),findsym(sym(f),b)+0.544444*. (subs(sym(f),findsym(sym(f),ta*0.654654+tb)+. subs(sym(f),findsym(sym(f),-ta*0.654654+tb)+. 0.711111*subs(sym(f),findsym(sym(f),tb); case 6, I=ta*(1/15)*(subs(sym(f),findsym(sym(f),a)+. subs(sym(f),findsym(sym(f),b)+0.554858*. (subs(sym(f),findsym(sym(f),ta*0.285232+tb)+. subs(sym(f),findsym(sym(f),-ta*0.285232+tb)+. 0.378475*(subs(sym(f),findsym(sym(f),ta*0.765055+tb)+. subs(sym(f),findsym(sym(f),-ta*0.765055+tb); end7. IntSample用三次样条插值求积分function q = IntSample(func,a,b,n)format long;node_num = n + 3; %加上延拓的2个节点共n+3个节点h = (b-a)/n;for i=1:node_num y(i) = subs(sym(func), findsym(sym(func), a+i*h-2*h);endy_1 = (-3*y(1)+4*y(2)-y(3)/(2*h);y_N = (3*y(node_num)-4*y(node_num-1)+3*y(node_num-2)/(2*h);c = SubBSample(h,node_num-1,y,y_1,y_N); %用样条逼近法求出样条系数q = h*(c(1)+c(node_num+2)/24+h*(c(2)+c(node_num+1)/2+23*h*(c(3)+c(node_num)/24;for j=4:node_num-1 q = q+h*c(j);endformat short;function c = SubBSample(h,n,y,y_1,y_N)f0 = 0.0;c = zeros(n+3,1);b = zeros(n+1,1);A = diag(4*ones(n+1,1);I = eye(n+1,n+1);AL = I(2:n+1,:);zeros(1,n+1);AU = zeros(1,n+1);I(1:n,:);A = A+AL+AU; %形成系数矩阵for i=2:n b(i,1) = 6*y(i);endb(1) = 6*y(1)+2*h*y_1;b(n+1) = 6*y(n+1)-2*h*y_N;d = followup(A,b); %用追赶法求出系数c(2:n+2) = d;c(1) = c(2) - 2*h*y_1; %c(-1)c(n+3) = c(3)+2*h*y_N; %c(n+1)8. IntPWC用抛物插值求积分function q = IntPWC(X,Y,n)format long;h = zeros(n-1,1);lamda = zeros(n,1);L = zeros(n-2,1);R = zeros(n-2,1);Dlta = zeros(n-2,1);h(1) = X(2)-X(1);for j=1:n-2 %计算每个子区间的积分参数 h(j+1) = X(j+2)-X(j+1); lamda(j) = h(j)/h(j+1); Dlta(j) = h(j+1)/h(j); L(j) = (Dlta(j)*Dlta(j)*Y(j)/(1+Dlta(j)-Dlta(j)*Y(j+1)+. +Dlta(j)*Y(j+2)/(1+Dlta(j); R(j) = (lamda(j)*lamda(j)*Y(j+2)/(1+lamda(j)-lamda(j)*Y(j+1)+. +lamda(j)*Y(j)/(1+lamda(j);endq = h(1)*(3*Y(1)+3*Y(2)-R(1)/6+h(n-1)*(3*Y(n-1)+3*Y(n)-L(n-2)/6;for k=2:n-2 q = q + h(k)*(3*Y(k)+3*Y(k+1)-0.5*R(k)-0.5*L(k-1)/6;endformat short;9. IntGaussLager用高斯-拉盖尔公式求积分function I = IntGaussLager(f,n,AK,XK)if(n6 & nargin = 2) AK = 0; XK = 0;else I=sum(AK.*subs(sym(f),findsym(sym(f),XK);endswitch n case 2, I=0.853553*subs(sym(f),findsym(sym(f),-0.585786)+. 0.146447*subs(sym(f),findsym(sym(f),3.414214); case 3, I=0.711093*subs(sym(f),findsym(sym(f),0.415575)+. 0.278518*subs(sym(f),findsym(sym(f),2.294280)+. 0.0103893*subs(sym(f),findsym(sym(f),6.289945); case 4, I=0.603154*subs(sym(f),findsym(sym(f),0.322548)+. 0.357419*subs(sym(f),findsym(sym(f),1.745761)+. 0.0388879*subs(sym(f),findsym(sym(f),4.536620)+. 0.000539295*subs(sym(f),findsym(sym(f),9.395071); case 5, I=0.521756*subs(sym(f),findsym(sym(f),0.263560)+. 0.398667*subs(sym(f),findsym(sym(f),1.413403)+. 0.0759424*subs(sym(f),findsym(sym(f),3.596426)+. 0.00361176*subs(sym(f),findsym(sym(f),7.085810)+. 0.0000233700*subs(sym(f),findsym(sym(f),12.640801); end10. IntGaussHermite用高斯-埃尔米特公式求积分function I = IntGaussHermite(f,n,AK,XK)if(n6 & nargin = 2) AK = 0; XK = 0;else I=sum(AK.*subs(sym(f),findsym(sym(f),XK);endswitch n case 2, I=0.886227*(subs(sym(f),findsym(sym(f),-0.707107)+. subs(sym(f),findsym(sym(f),0.707107); case 3, I=1.181636*subs(sym(f),findsym(sym(f),0)+. 0.295409*(subs(sym(f),findsym(sym(f),1.224745)+. subs(sym(f),findsym(sym(f),-1.224745); case 4, I=0.544444*(subs(sym(f),findsym(sym(f),0.524648)+. subs(sym(f),findsym(sym(f),-0.524648)+. 0.100000*(subs(sym(f),findsym(sym(f),1.650680)+. subs(sym(f),findsym(sym(f),-1.650680); case 5, I=0.945309*subs(sym(f),findsym(sym(f),0)+. 0.393619*(subs(sym(f),findsym(sym(f),0.958572)+. subs(sym(f),findsym(sym(f),-0.958572)+. 0.199532*(subs(sym(f),findsym(sym(f),2.020183)+. subs(sym(f),findsym(sym(f),-2.020183); end11. IntQBXF1求第一类切比雪夫积分function q = IntQBXF1(func,n)format long;pi = 3.1415926535;q = 0;A = zeros(n,1);x = zeros(n,1);for i=1:n A(i) = pi/n; x(i) = cos(pi*(2*i-1)/2/n); y(i) = subs(sym(func), findsym(sym(func), x(i); q = q + A(i)*y(i);end12. IntQBXF2求第二类切比雪夫积分function q = IntQBXF2(func,n)format long;pi = 3.1415926535;q = 0;A = zeros(n,1);x = zeros(n,1);for i=1:n A(i) = sin(i*pi)/(n+1)*sin(i*pi)/(n+1)*pi/(n+1); x(i) = cos(pi*i/(n+1); y(i) = subs(sym(func), findsym(sym(func), x(i); q = q + A(i)*y(i);end13. DblTraprl用梯形公式求重积分function q=DblTraprl(f,a,A,b,B,m,n)if(m=1 & n=1) %梯形公式 q=(B-b)*(A-a)/4)*(subs(sym(f),findsym(sym(f),a,b)+. subs(sym(f),findsym(sym(f),a,B)+. subs(sym(f),findsym(sym(f),A,b)+. subs(sym(f),findsym(sym(f),A,B); else %复合梯形公式 C=4*ones(n+1,m+1); C(1,:)=2; C(:,1)=2; C(n+1,:)=2; C(:,m+1)=2; C(1,1)=1; C(1,m+1)=1; C(n+1,1)=1; C(n+1,m+1)=1; %C矩阵endF=zeros(n+1,m+1);q=0;for i=0:n for j=0:m x=a+i*(A-a)/n; y=b+j*(B-b)/m; F(i+1,j+1)=subs(sym(f),findsym(sym(f),x,y); q=q+F(i+1,j+1)*C(i+1,j+1); endendq=(B-b)*(A-a)/4/m/n)*q;14. DblSimpson用辛普森公式求重积分function q=DblSimpson(f,a,A,b,B,m,n)if(m=1 & n=1) %辛普森公式 q=(B-b)*(A-a)/9)*(subs(sym(f),findsym(sym(f),a,b)+. subs(sym(f),findsym(sym(f),a,B)+. subs(sym(f),findsym(sym(f),A,b)+. subs(sym(f),findsym(sym(f),A,B)+. 4*subs(sym(f),findsym(sym(f),(A-a)/2,b)+. 4*subs(sym(f),findsym(sym(f),(A-a)/2,B)+. 4*subs(sym(f),findsym(sym(f),a,(B-b)/2)+. 4*subs(sym(f),findsym(sym(f),A,(B-b)/2)+. 16*subs(sym(f),findsym(sym(f),(A-a)/2,(B-b)/2); else %复合辛普森公式 q=0; for i=0:n-1 for j=0:m-1 x=a+2*i*(A-a)/2/n; y=b+2*j*(B-b)/2/m; x1=a+(2*i+1)*(A-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论