余角和补角ppt.ppt_第1页
余角和补角ppt.ppt_第2页
余角和补角ppt.ppt_第3页
余角和补角ppt.ppt_第4页
余角和补角ppt.ppt_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

余角和补角 1 学习目标 1 认识一个角的余角和补角 并会求一个角的余角和补角 2 掌握余角和补角的性质 并能用它解决相关问题 3 通过余角 补角性质的推导和应用 初步掌握图形语言与符号语言之间的相互转化 学习重点 互余 互补的概念及其性质 1 2 比萨斜塔 2 互为余角 互余 如果两个角的和是90 直角 那么这两个角叫做互为余角 其中一个角是另一个角的余角 即 1是 2的余角或 2是 1的余角 图中给出的各角 那些互为余角 10o 25o 65o 80o 44o 46o 考考你 3 4 比萨斜塔 4 互为补角 互补 如果两个角的和是180 平角 那么这两个角叫做互为补角 其中一个角是另一个角的补角 即 3是 4的补角或 4是 3的补角 图中给出的各角 那些互为补角 10o 30o 60o 80o 100o 120o 150o 170o 考考你 创设情境 引出新知 如果两个角的和等于90 直角 就说这两个角互为余角 即其中每一个角是另一个角的余角 如果两个角的和等于180 平角 就说这两个角互为补角 即其中一个角是另一个角的补角 1 定义中的 互为 是什么意思 2 把下图中 1与 ADF分离并多次变换位置 如图 这两角还是互为补角吗 理解定义 巩固运用 即每一个角都是另一个角的余角 补角 互余和互补是两个角的数量关系 与它们的位置无关 我来试一试 27 37 117 37 85 175 58 148 45 135 103 13 180 x 同一个锐角的补角比它的余角大 90 练习一 填空1 70 的余角是 补角是 2 90 的余角是 它的补角是 110 20 90 180 重要提醒 如何表示一个角的余角和补角 锐角 的余角是 90 的补角是 180 3 图中给出的各角中 哪些互为余角 哪些互为补角 例1 若一个角的补角等于它的余角的4倍 求这个角的度数 解 设这个角是x 则它的补角是 180 x 余角是 90 x 根据题意得 180 x 4 90 x 解得 x 60 答 这个角的度数是60 练习 1 一个角的补角是它的3倍 这个角是多少度 解 设这个角为x 则它的补角为 180 x 得 180 x 3x 解之得 x 45 答 这个角是45 1 已知 1与 2 3都互为补角 那么 2和 3的大小有什么关系 推导性质 理解运用 由 1与 2和 3都互为补角 那么 2 180 1 3 180 1 所以 2 3 2 已知 1与 2互补 3与 4互补 若 1 3 那么 2和 4相等吗 为什么 由 1与 2互补 得 1 2 180 所以 2 180 1 由 3与 4互补 得 3 4 180 所以 4 180 3 又因为 1 3 180 1 180 3 所以 2 4 推导性质 理解运用 等角的余角相等 等角的补角相等 对于余角是否也有类似性质 同角 同角 如图 1与 2互余 与 互余 如果 1 那么 2与 相等吗 为什么 探究 余角的性质 猜想 同角或等角的余角相等 探究 余角的性质 如图 1与 2互余 与 互余 如果 1 那么 2与 相等吗 为什么 解 1 2 90 3 4 90 2 90 1 4 90 3 1 3 90 1 90 3 即 2 4 余角性质 同角或等角的余角相等 如图 AOB 90 COD 90 则 1与 2是什么关系 答 1 2因为 1 BOD 90 2 BOD 90 所以 1 2 A O B C D 同角的余角相等 1 2 推导性质 理解运用 推导性质 理解运用 所以 COD COE AOC BOC 解 因为A O B在同一直线上 所以 AOC和 BOC互为补角 又因为射线OD和射线OE分别平分 AOC BOC AOC BOC 90 所以 COD和 COE互为余角 同理 AOD BOE AOD COE COD BOE也互为余角 如图 已知AOB是一直线 OC是 AOB的平分线 DOE是直角 图中哪些角互余 哪些角互补 哪些角相等 A O B E C D 1 2 3 4 探索研究 EOD 90 图中互余角有4对 互补角有5对 检测 1 90度的角叫余角 180度的角叫补角 3 如果一个角有补角 那么这个角一定是钝角 一 判断题 4 互补的两个角不可能相等 5 钝角没有余角 但一定有补角 6 互余的两个角一定都是锐角 两个锐角一定互余 7 如果 2 若 8 如果 1 120 1与 2互补 3与 2互余 则 3 2 O为直线AB上的一点 OD平分 AOB COE 90 则 BOC COD 检测 DOE AOE 30 课堂小结 自我完善 1 2 90 1 2 180 同角或等角的余角相等 同角或等角的补角相等 余角和补角 2 探究 你知道方位角吗 有时以正北 正南方向为基准 描述物体运动的方向 表示方向的角 方位角 在航行 测绘等工作中经常用到 推导性质 理解运用 例 如图 是表示北偏东 方向的一条射线 仿照这条射线 画出表示下列方向的角 南偏东 北偏西 东 西 北 南 A 例2 如图 货轮O在航行过程中 发现灯塔A在它南偏东60 的方向上 同时 在它北偏东40 南偏西10 西北 即北偏西45 方向上又分别发现了客轮B 货轮C和海岛D 仿照表示灯塔方位的方法画出表示客轮B 货轮C和海岛D方向的射线 射线OA的方向就是南偏东60 即灯塔A所在的方向 射线OB的方向就是北偏东40 即客轮B所在的方向 射线OC的方向就是南偏西10 即货轮C所在的方向 射线OD的方向就是北偏西45 即海岛D所在的方向 A B D C 1 如图 OA表示北偏东32 方向线 OB表示南偏东43 方向线 则 AOB等于 2 A看B的方向是北偏东30 那么B看A的方向是 A 南偏东60 B 南偏西60 C 南偏东30 D 南偏西30 本节课你学到了哪些知识 请你说一说 1 互余和互补 1 2 90

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论