全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.2应用举例解三角形 学习目标 1. 能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题;2. 掌握三角形的面积公式的简单推导和应用;3. 能证明三角形中的简单的恒等式 学习过程 一、课前准备复习1:在ABC中(1)若,则等于 (2)若,则 _复习2:在中,则高BD= ,三角形面积= 二、新课导学 学习探究探究:在ABC中,边BC上的高分别记为h,那么它如何用已知边和角表示?h=bsinC=csinB根据以前学过的三角形面积公式S=ah,代入可以推导出下面的三角形面积公式,S=absinC, 或S= ,同理S= 新知:三角形的面积等于三角形的任意两边以及它们夹角的正弦之积的一半 典型例题例1. 在ABC中,根据下列条件,求三角形的面积S(精确到0.1cm):(1)已知a=14.8cm,c=23.5cm,B=148.5;(2)已知B=62.7,C=65.8,b=3.16cm;(3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm变式:在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68m,88m,127m,这个区域的面积是多少?(精确到0.1cm)例2. 在ABC中,求证:(1)(2)+=2(bccosA+cacosB+abcosC)小结:证明三角形中恒等式方法: 应用正弦定理或余弦定理,“边”化“角”或“角”化“边” 动手试试练1. 在ABC中,已知,则ABC的面积是 练2. 在ABC中,求证: 三、总结提升 学习小结1. 三角形面积公式:S=absinC= = 2. 证明三角形中的简单的恒等式方法:应用正弦定理或余弦定理,“边”化“角”或“角”化“边” 知识拓展三角形面积,这里,这就是著名的海伦公式 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 在中,则( ).A. B. C. D. 2. 三角形两边之差为2,夹角的正弦值为,面积为,那么这个三角形的两边长分别是( ).A. 3和5 B. 4和6 C. 6和8 D. 5和73. 在中,若,则一定是( )三角形A. 等腰 B. 直角 C. 等边 D. 等腰直角4. 三边长分别为,它的较大锐角的平分线分三角形的面积比是 5. 已知三角形的三边的长分别为,则ABC的面积是 课后作业 1.已知在A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 感光材料涂布工安全生产能力强化考核试卷含答案
- 交换机务员岗前任职考核试卷含答案
- 中学生体育锻炼对心理压力缓解的实证研究教学研究课题报告
- 某国企混合所有制改革法律风险分析
- 县级医院招聘面试题库及解析报告
- 高中化学动力学原理解释等离子体化学蚀刻速率影响因素分析课题报告教学研究课题报告
- 物流配送流程管理方案
- 建筑工程测量技术标准汇编
- 2025年智能门锁芯技术发展趋势研究报告
- 基于教师教学画像的中学美术教学领导力提升策略研究教学研究课题报告
- 病历书写基本规范课件
- 砼面板堆石坝混凝土面板无轨滑模施工技术专项方案设计模板
- 新海兰褐饲养管理手册
- 心理测量学复习重点方案
- 地下室抗浮锚杆工程施工方案
- 杆件的应力与强度计算拉伸杆
- HGT-20519-2009-化工工艺设计施工图内容和深度统一规定
- 大合唱领导讲话
- GB/T 4666-2009纺织品织物长度和幅宽的测定
- GB/T 3512-2014硫化橡胶或热塑性橡胶热空气加速老化和耐热试验
- 高危儿及营养性疾病的筛查与管理优质精选课件
评论
0/150
提交评论