




已阅读5页,还剩32页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
CompanyLogo 主讲教师 张恩路 线性代数 LinearAlgebra 第一章行列式 1 牢记行列式的6条性质 2 会利用行列式的性质计算行列式的值 3 掌握余子式和代数余子式的定义及按行 列 展开定理 4 会利用按行 列 展开定理计算行列式的值 n阶行列式的性质 性质1 行列式与它的转置行列式相等 即DT D 性质2 互换行列式的两行 列 行列式变号 推论 如果行列式有两行 列 完全相同 则此行列式为零 性质3 行列式的某一行 列 中所有的元素都乘以同一数k 等于用数k乘此行列式 推论 行列式的某一行 列 中所有元素的公因子可以提到行列式符号的外面 性质4 行列式中如果有两行 列 元素成比例 则此行列式为零 性质5 若行列式的某一列 行 的元素都是两数之和 则该行列式等于两个行列式之和 性质6 把行列式的某一列 行 的各元素乘以同一数然后加到另一列 行 对应的元素上去 行列式不变 定理3行列式等于它的任一行 列 的各元素与其对应的代数余子式乘积之和 即 推论行列式任一行 列 的元素与另一行 列 的对应元素的代数余子式乘积之和等于零 即 综上所述 有 同理可得 第二章矩阵及其运算 1 掌握矩阵的运算性质 会求矩阵的加法 数乘及矩阵与矩阵的运算 3 会利用伴随矩阵求逆矩阵 会解矩阵方程 4 会利用分块矩阵的性质计算矩阵的逆矩阵 2 掌握矩阵的转置性质 方阵的行列式性质及逆矩阵的性质 转置矩阵的运算性质 方阵的行列式 定义 由n阶方阵的元素所构成的行列式 叫做方阵A的行列式 记作 A 或detA 运算性质 如果n阶方阵A B可逆 那么 与AB也可逆 且 逆矩阵的性质 分块对角矩阵的性质 A A1 A2 As 若 As 0 则 A 0 并且 第三章矩阵的初等变换与线性方程组 1 掌握矩阵的三种初等变换 行阶梯形矩阵 行最简形矩阵 5 掌握矩阵秩的一些最基本的性质 7 会讨论线性方程组系数矩阵的待定系数来判定线性方程组是否有解情况 2 会用初等行变换将矩阵化为行阶梯形矩阵 行最简形矩阵 3 会用初等行变换求逆矩阵及矩阵方程 4 会用初等行变换求矩阵的秩 6 掌握线性方程组有解的判定条件 定义 下列三种变换称为矩阵的初等行变换 对调两行 记作 以非零常数k乘某一行的所有元素 记作 某一行加上另一行的k倍 记作 行阶梯形矩阵 可画出一条阶梯线 线的下方全为零 每个台阶只有一行 阶梯线的竖线后面是非零行的第一个非零元素 行最简形矩阵 行阶梯型矩阵若满足 1 非零行的首个非零元为1 2 这些非零元所在的列的其它元素都为零 一 初等变换与矩阵乘法的关系 定理1设A B是一个m n矩阵 则 1 的充要条件是存在可逆矩阵P 使得PA B 2 的充要条件是存在可逆矩阵Q 使得AQ B 3 的充要条件是存在可逆矩阵P和Q 使得PAQ B 推论1方阵A可逆的充要条件是 推论2方阵A可逆的充要条件是 推论3方阵A可逆的充要条件是 初等行变换 二 初等变换法求逆矩阵 三 初等变换的其他应用 初等行变换 矩阵的秩的性质 若A为m n矩阵 则0 R A min m n R AT R A 若A B 则R A R B 若P Q可逆 则R PAQ R A max R A R B R A B R A R B 特别地 当B b为非零列向量时 有R A R A b R A 1 R A B R A R B R AB min R A R B 若Am nBn l O 则R A R B n 定理1n元线性方程组AX b 无解的充分必要条件是R A R A b 有唯一解的充分必要条件是R A R A b n 有无限多解的充分必要条件是R A R A b n 定理3n元齐次线性方程组AX 0 只有零解的充分必要条件是R A n 有非零解的充分必要条件是R A n 定理2线性方程组AX b有解的充分必要条件是R A R A b 无解 否 是 无限多个解 否 是 唯一解 包含n R A 个自由变量的通解 写出增广矩阵B 行最简形矩阵 求解线性方程组的步骤 其中n为线性方程组未知数的个数 齐次线性方程组 无穷多个解 否 是 唯一解 包含n R A 个自由变量的通解 第四章向量组的线性相关性 1 掌握向量组线性表示概念 会判定向量组的线性相关性 2 会求向量组的秩及向量组的最大无关组 3 掌握线性方程组的解的结构 会利用解的结构判定方程组的解 4 会求齐次线性方程组的基础解系 5 会利用矩阵的秩求方程组的解空间维数 6 会利用基变换公式与坐标变换公式及过度矩阵求解相关问题 向量组的线性组合定义2 给定向量组A a1 a2 am 对于任何一组实数k1 k2 km 表达式k1a1 k2a2 kmam称为向量组A的一个线性组合 k1 k2 km称为这个线性组合的系数 给定向量组A a1 a2 am和向量b 如果存在一组实数l1 l2 lm 使得b l1a1 l2a2 lmam则向量b是向量组A的线性组合 这时称向量b能由向量组A线性表示 向量组线性相关性的判定 重点 难点 向量组A a1 a2 am线性相关存在不全为零的实数k1 k2 km 使得k1a1 k2a2 kmam 0 零向量 m元齐次线性方程组Ax 0有非零解 矩阵A a1 a2 am 的秩小于向量的个数m 向量组A中至少有一个向量能由其余m 1个向量线性表示 线性相关性的判定 向量组线性无关性的判定 重点 难点 向量组A a1 a2 am线性无关如果k1a1 k2a2 kmam 0 零向量 则必有k1 k2 km 0 m元齐次线性方程组Ax 0只有零解 矩阵A a1 a2 am 的秩等于向量的个数m 向量组A中任何一个向量都不能由其余m 1个向量线性表示 相关结论 1 若向量组A a1 a2 am线性相关 则向量组B a1 a2 am am 1也线性相关 部分相关 整体相关 其逆否命题也成立 即若向量组B线性无关 则向量组A也线性无关 整体无关 部分无关 最大无关组的求法 将向量组a1 a2 am通过初等行变换化成行阶梯形 找到矩阵A的一个最高阶非零子式Dr则Dr所在的r列是A的列向量组的一个最大无关组 Dr所在的r行是A的行向量组的一个最大无关组 注1 最大无关组一般选取行阶梯形矩阵中首个非零元所在的列 2 向量组的最大无关组一般是不唯一的 3 向量组A和它自己的最大无关组A0是等价的 齐次线性方程组的解的性质 性质1 若x x1 x x2是齐次线性方程组Ax 0的解 则x x1 x2还是Ax 0的解 性质2 若x x是齐次线性方程组Ax 0的解 k为实数 则x kx还是Ax 0的解 结论 若x x1 x x2 x xt是齐次线性方程组Ax 0的解 则x k1x1 k2x2 ktxt还是Ax 0的解 性质3 若x h1 x h2是非齐次线性方程组Ax b的解 则x h1 h2是对应的齐次线性方程组Ax 0 导出组 的解 性质4 若x h是非齐次线性方程组Ax b的解 x x是导出组Ax 0的解 则x x h还是Ax b的解 例如 若x h1 x h2是Ax b的解 则 1 h1 h2是齐次线性方程组Ax 0的解 2 h1 h2 2是非齐次线性方程组Ax b的解 非齐次线性方程组的解的性质 基础解系的概念 定义2齐次线性方程组Ax 0的一组解向量x1 x2 xr如果满足 x1 x2 xr线性无关 方程组中任意一个解都可以表示x1 x2 xr的线性组合 那么称这组解是齐次线性方程组的一个基础解系 注 齐次线性方程组的基础解系不唯一 齐次线性方程组的解集的最大无关组为基础解系 定理7 设m n矩阵的秩R A r 则n元齐次线性方程组Ax 0的解集S的秩RS n r 已知n元齐次线性方程组的解集为S1 x Ax 0 则齐次线性方程组Ax 0的基础解系是S1的一个基 故S1的维数等于n R A 定义3如果在向量空间V中取定一个基a1 a2 ar 那么V中任意一个向量x可唯一表示为x l1a1 l2a2 lrar数组l1 l2 lr称为向量x在基a1 a2 ar中的坐标 例3的列向量组是R3的一个基 那么 b在基e1 e2 e3中的坐标 基变换公式与坐标变换公式 过度矩阵 在R3中取定一个基a1 a2 a3 再取一个新基b1 b2 b3 设A a1 a2 a3 B b1 b2 b3 求用a1 a2 a3表示b1 b2 b3的表示式 基变换公式 求向量在两个基中的坐标之间的关系式 坐标变换公式 解 1 根据向量组B能由向量组A线性表示的充要条件 只需求解矩阵方程AX B即可 解得X A 1B 即 b1 b2 b3 a1 a2 a3 P其中P A 1B 称为基A到B的过渡矩阵 transitionmatrix 2 设x R3 且 故 是从旧坐标到新坐标的坐标转换公式 及 例如 已知R3的两组基为 1 求基到基的过度矩阵P 2 向量x在基中的坐标为x在基中的坐标 第五章相似矩阵 1 掌握向量特征值的概念和性质 3 掌握两个矩阵相似的概念和性质 4 会利用相似矩阵的概念 性质及矩阵的特征值的性质计算相关问题 2 会求向量的特征值和特征向量 一 基本概念 定义1 设A是n阶矩阵 如果数l和n维非零向量x满足Ax lx 那么这样的数l称为矩阵A的特征值 非零向量x称为A对应于特征值l的特征向量 Ax lx lEx非零向量x满足 A lE x 0 零向量 齐次线性方程组有非零解系数行列式 A lE 0 特征值和特征向量的性质 在复数范围内n阶矩阵A有n个特征值 重根按重数计算 设n阶矩阵A的特征值为l1 l2 ln 则l1 l2 ln a11 a22 annl1l2 ln A 若l是A的一个特征值 则齐次线性方程组的基础解系就是对应于特征值为l的全体特征向量的最大无关组 若l是A的一个特征值 则j l a0 a1l amlm是矩阵多项式j A a0 a1A amAm的特征值 特征值和特征向量的求法 1 解特征方程 A lE 0 求得特征值l 2 解方程组 A l
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 鱼我所鱼也课件
- 魅力昆虫课件
- 济南市2024-2025学年七年级上学期语文月考模拟试卷
- 济南市2025-2026学年八年级上学期语文期中模拟试卷
- 高速铁路运行管理课件
- 高速收费站安全知识培训课件
- 工程造价咨询及财务审计项目服务方案
- 电脑课件保存至U盘无法打开问题
- 2025年公路水运工程施工企业安全生产管理人员考试题库
- 设备检测技术服务合同
- 非标设备检验标准
- 皖2015s209 混凝土砌块式排水检查井
- 外墙涂料工程技术标书
- 初中综合实践课程活动教案5篇(初中综合实践活动课件)
- 教学课件-信号智能电源屏(鼎汉)的简介与维护
- 旗袍英文介绍课件
- 模块二-化肥减施增效基础知识课件
- CML慢性髓系白血病医学教学课件
- 临床实习带教工作总结
- 老年营养不良
- 咽喉科内镜诊疗技术管理规范
评论
0/150
提交评论