已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Projects 1: Part AProblem 1 for the following system: y(n)+ay(n-1)=x(n); where (a) a=0.9; (b) a=-0.9(a)Zero-pole plane, impulse response, |H(w)| and angle H(w): in figure 1. Figure 1.DFT of the impulse response (magnitude and angular spectrum): in figure 2. Figure 2.Comparison between DFT and DTFT:When N=10: in figure 3. Figure 3.When N=30: in figure 4 Figure 4.When N=50: in figure 5. Figure 5.(b)Zero-pole plane, impulse response, |H(w)| and angle H(w): in figure 6. Figure 6.DFT of the impulse response (magnitude and angular spectrum): in figure 7. Figure 7.Comparison between DFT and DTFT:When N=10: in figure 8. Figure 8.When N=30: in figure 9. Figure 9.When N=50: in figure 10. Figure 10.Problem 2: repeat steps above for the following system:H (Z) =Where (a) 0=/8 and r=0.95;(b) 0=/4 and r=0.95;(c) 0=/8 and r=0.99;(a)Zero-pole plane, impulse response, |H (w)| and angle H (w): in figure 11. Figure 11.DFT of the impulse response (magnitude and angular spectrum): in figure 12. Figure 12.Comparison between DFT and DTFT:When N=10: in figure 13. Figure 13.When N=30: in figure 14. Figure 14.When N=50: in figure 15. Figure 15. (b)Zero-pole plane, impulse response, |H(w)| and angle H(w): in figure 16. Figure 16.DFT of the impulse response (magnitude and angular spectrum): in figure 17. Figure 17.Comparison between DFT and DTFT:When N=10: in figure 18. Figure 18.When N=30: in figure 19. Figure 19.When N=50: in figure 20. Figure 20.(c)Zero-pole plane, impulse response, |H (w)| and angle H (w): in figure 21. Figure 21.DFT of the impulse response (magnitude and angular spectrum): in figure 22. Figure 22.Comparison between DFT and DTFT:When N=10: in figure 23. Figure 23When N=30: in figure 24. Figure 24.When N=50: in figure 25. Figure 25.Problem 1:(a) a=0.91(Z-P plane&impulse response&DTFT) b=1; a=1 0.9; pul=1 zeros(1,59); subplot(221) zplane(b,a) title(zero-pole plane) subplot(222) h1=impz(b,a,60); stem(h1) title(impulse response) subplot(223) H,w=freqz(b,a,whole); plot(w,abs(H) title(|H(w)|) xlabel(w) subplot(224) plot(w,angle(H) title(angle H(w) xlabel(w)2(DFT) b=1; a=1 0.9; L=100; NFFT=2nextpow2(L); N=10; h1=impz(b,a,N); H,w=freqz(b,a,NFFT); y=fft(h1,NFFT); magY=abs(y); phaY=angle(y); subplot(221) plot(w,magY) title(magnitude) xlabel(frequency) ylabel(magnitude) subplot(222) plot(w,phaY) title(phase) xlabel(frequency) ylabel(phase)3(DFT compares to DTFT) N=10, 30, 50 b=1; a=1 0.9; L=100; NFFT=2nextpow2(L); N=10; h1=impz(b,a,N); H,w=freqz(b,a,NFFT,whole); y=fft(h1,NFFT); magY=abs(y); phaY=angle(y); subplot(221) plot(w,magY) hold on; plot(w,abs(H) hold off; title(magnitude) xlabel(frequency) ylabel(magnitude) subplot(222) plot(w,phaY) hold on; plot(w,angle(H) hold off; title(phase) xlabel(frequency) ylabel(phase)(b) a=-0.91(Z-P plane&impulse response&DTFT) b=1; a=1 -0.9; pul=1 zeros(1,59); subplot(221) zplane(b,a) title(zero-pole plane) subplot(222) h1=impz(b,a,60); stem(h1) title(impulse response) subplot(223) H,w=freqz(b,a,whole); plot(w,abs(H) title(|H(w)|) xlabel(w) subplot(224) plot(w,angle(H) title(angle H(w) xlabel(w)2(DFT) b=1; a=1 -0.9; L=100; NFFT=2nextpow2(L); N=10; h1=impz(b,a,N); H,w=freqz(b,a,NFFT); y=fft(h1,NFFT); magY=abs(y); phaY=angle(y); subplot(221) plot(w,magY) title(magnitude) xlabel(frequency) ylabel(magnitude) subplot(222) plot(w,phaY) title(phase) xlabel(frequency) ylabel(phase)3(DFT compares to DTFT) N=10, 30, 50 b=1; a=1 -0.9; L=100; NFFT=2nextpow2(L); N=10; h1=impz(b,a,N); H,w=freqz(b,a,NFFT,whole); y=fft(h1,NFFT); magY=abs(y); phaY=angle(y); subplot(221) plot(w,magY) hold on; plot(w,abs(H) hold off; title(magnitude) xlabel(frequency) ylabel(magnitude) subplot(222) plot(w,phaY) hold on; plot(w,angle(H) hold off; title(phase) xlabel(frequency) ylabel(phase)Problem 2:(a)1 (Z-P plane&impulse response&DTFT) b=1 -0.855; a=1 -1.71 0.9025; pul=1 zeros(1,59); subplot(221) zplane(b,a) title(zero-pole plane) subplot(222) h1=impz(b,a,60); stem(h1) title(impulse response) subplot(223) H,w=freqz(b,a,whole); plot(w,abs(H) title(|H(w)|) xlabel(w) subplot(224) plot(w,angle(H) title(angle H(w) xlabel(w)2 (DFT) b=1 -0.855; a=1 -1.71 0.9025; L=100; NFFT=2nextpow2(L); N=10; h1=impz(b,a,N); H,w=freqz(b,a,NFFT); y=fft(h1,NFFT); magY=abs(y); phaY=angle(y); subplot(221) plot(w,magY) title(magnitude) xlabel(frequency) ylabel(magnitude) subplot(222) plot(w,phaY) title(phase) xlabel(frequency) ylabel(phase)3 (DFT compares to DTFT) b=1 -0.855; a=1 -1.71 0.9025; L=100; NFFT=2nextpow2(L); N=10; h1=impz(b,a,N); H,w=freqz(b,a,NFFT,whole); y=fft(h1,NFFT); magY=abs(y); phaY=angle(y); subplot(221) plot(w,magY) hold on; plot(w,abs(H) hold off; title(magnitude) xlabel(frequency) ylabel(magnitude) subplot(222) plot(w,phaY) hold on; plot(w,angle(H) hold off; title(phase) xlabel(frequency) ylabel(phase)(b)1 (Z-P plane&impulse response&DTFT) b=1 -0.665; a=1 -1.33 0.9025; pul=1 zeros(1,59); subplot(221) zplane(b,a) title(zero-pole plane) subplot(222) h1=impz(b,a,60); stem(h1) title(impulse response) subplot(223) H,w=freqz(b,a,whole); plot(w,abs(H) title(|H(w)|) xlabel(w) subplot(224) plot(w,angle(H) title(angle H(w) xlabel(w)2 (DFT) b=1 -0.665; a=1 -1.33 0.9025; L=100; NFFT=2nextpow2(L); N=10; h1=impz(b,a,N); H,w=freqz(b,a,NFFT); y=fft(h1,NFFT); magY=abs(y); phaY=angle(y); subplot(221) plot(w,magY) title(magnitude) xlabel(frequency) ylabel(magnitude) subplot(222) plot(w,phaY) title(phase) xlabel(frequency) ylabel(phase)3 (DFT compares to DTFT) b=1 -0.665; a=1 -1.33 0.9025; L=100; NFFT=2nextpow2(L); N=50; h1=impz(b,a,N); H,w=freqz(b,a,NFFT,whole); y=fft(h1,NFFT); magY=abs(y); phaY=angle(y); subplot(221) plot(w,magY) hold on; plot(w,abs(H) hold off; title(magnitude) xlabel(frequency) ylabel(magnitude) subplot(222) plot(w,phaY) hold on; plot(w,angle(H) hold off; title(phase) xlabel(frequency) ylabel(phase)(c)1 (Z-P plane&impulse response&DTFT) b=1 -0.891; a=1 -1.782 0.9801; pul=1 zeros(1,59); subplot(221) zplane(b,a) title(zero-pole plane) subplot(222) h1=impz(b,a,60); stem(h1) title(impulse response) subplot(223) H,w=freqz(b,a,whole); plot(w,abs(H) title(|H(w)|) xlabel(w) subplot(224) plot(w,angle(H) title(angle H(w) xlabel(w)2 (DFT) b=1 -
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年鞍山辅警招聘考试题库附答案详解(考试直接用)
- 2025年阜新辅警协警招聘考试备考题库及完整答案详解一套
- 2025年鹤壁辅警招聘考试真题含答案详解(培优a卷)
- 2025年珠海辅警招聘考试题库完整参考答案详解
- 2025年衢州辅警协警招聘考试备考题库附答案详解(黄金题型)
- 2025年牡丹江辅警招聘考试真题及参考答案详解一套
- 2025年襄樊辅警协警招聘考试真题含答案详解(培优a卷)
- 2025年长治辅警招聘考试题库及完整答案详解
- 2025年黄山辅警协警招聘考试真题带答案详解(完整版)
- 2025年舟山辅警协警招聘考试真题及完整答案详解
- 个人教育职业发展历程
- 道路创新设计
- 职业生涯规划课件演讲
- DB4105∕T 227-2024 甲骨文广播体操动作规范
- (2025)汽车专业技能大赛理论知识题库及参考答案
- 江苏的历史文化课件
- 商业篮球馆设计
- 矿山修复培训课件
- 住房公积金政策培训课件
- 胶水培训课件
- 产房急救流程标准化操作
评论
0/150
提交评论