




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Projects 1: Part AProblem 1 for the following system: y(n)+ay(n-1)=x(n); where (a) a=0.9; (b) a=-0.9(a)Zero-pole plane, impulse response, |H(w)| and angle H(w): in figure 1. Figure 1.DFT of the impulse response (magnitude and angular spectrum): in figure 2. Figure 2.Comparison between DFT and DTFT:When N=10: in figure 3. Figure 3.When N=30: in figure 4 Figure 4.When N=50: in figure 5. Figure 5.(b)Zero-pole plane, impulse response, |H(w)| and angle H(w): in figure 6. Figure 6.DFT of the impulse response (magnitude and angular spectrum): in figure 7. Figure 7.Comparison between DFT and DTFT:When N=10: in figure 8. Figure 8.When N=30: in figure 9. Figure 9.When N=50: in figure 10. Figure 10.Problem 2: repeat steps above for the following system:H (Z) =Where (a) 0=/8 and r=0.95;(b) 0=/4 and r=0.95;(c) 0=/8 and r=0.99;(a)Zero-pole plane, impulse response, |H (w)| and angle H (w): in figure 11. Figure 11.DFT of the impulse response (magnitude and angular spectrum): in figure 12. Figure 12.Comparison between DFT and DTFT:When N=10: in figure 13. Figure 13.When N=30: in figure 14. Figure 14.When N=50: in figure 15. Figure 15. (b)Zero-pole plane, impulse response, |H(w)| and angle H(w): in figure 16. Figure 16.DFT of the impulse response (magnitude and angular spectrum): in figure 17. Figure 17.Comparison between DFT and DTFT:When N=10: in figure 18. Figure 18.When N=30: in figure 19. Figure 19.When N=50: in figure 20. Figure 20.(c)Zero-pole plane, impulse response, |H (w)| and angle H (w): in figure 21. Figure 21.DFT of the impulse response (magnitude and angular spectrum): in figure 22. Figure 22.Comparison between DFT and DTFT:When N=10: in figure 23. Figure 23When N=30: in figure 24. Figure 24.When N=50: in figure 25. Figure 25.Problem 1:(a) a=0.91(Z-P plane&impulse response&DTFT) b=1; a=1 0.9; pul=1 zeros(1,59); subplot(221) zplane(b,a) title(zero-pole plane) subplot(222) h1=impz(b,a,60); stem(h1) title(impulse response) subplot(223) H,w=freqz(b,a,whole); plot(w,abs(H) title(|H(w)|) xlabel(w) subplot(224) plot(w,angle(H) title(angle H(w) xlabel(w)2(DFT) b=1; a=1 0.9; L=100; NFFT=2nextpow2(L); N=10; h1=impz(b,a,N); H,w=freqz(b,a,NFFT); y=fft(h1,NFFT); magY=abs(y); phaY=angle(y); subplot(221) plot(w,magY) title(magnitude) xlabel(frequency) ylabel(magnitude) subplot(222) plot(w,phaY) title(phase) xlabel(frequency) ylabel(phase)3(DFT compares to DTFT) N=10, 30, 50 b=1; a=1 0.9; L=100; NFFT=2nextpow2(L); N=10; h1=impz(b,a,N); H,w=freqz(b,a,NFFT,whole); y=fft(h1,NFFT); magY=abs(y); phaY=angle(y); subplot(221) plot(w,magY) hold on; plot(w,abs(H) hold off; title(magnitude) xlabel(frequency) ylabel(magnitude) subplot(222) plot(w,phaY) hold on; plot(w,angle(H) hold off; title(phase) xlabel(frequency) ylabel(phase)(b) a=-0.91(Z-P plane&impulse response&DTFT) b=1; a=1 -0.9; pul=1 zeros(1,59); subplot(221) zplane(b,a) title(zero-pole plane) subplot(222) h1=impz(b,a,60); stem(h1) title(impulse response) subplot(223) H,w=freqz(b,a,whole); plot(w,abs(H) title(|H(w)|) xlabel(w) subplot(224) plot(w,angle(H) title(angle H(w) xlabel(w)2(DFT) b=1; a=1 -0.9; L=100; NFFT=2nextpow2(L); N=10; h1=impz(b,a,N); H,w=freqz(b,a,NFFT); y=fft(h1,NFFT); magY=abs(y); phaY=angle(y); subplot(221) plot(w,magY) title(magnitude) xlabel(frequency) ylabel(magnitude) subplot(222) plot(w,phaY) title(phase) xlabel(frequency) ylabel(phase)3(DFT compares to DTFT) N=10, 30, 50 b=1; a=1 -0.9; L=100; NFFT=2nextpow2(L); N=10; h1=impz(b,a,N); H,w=freqz(b,a,NFFT,whole); y=fft(h1,NFFT); magY=abs(y); phaY=angle(y); subplot(221) plot(w,magY) hold on; plot(w,abs(H) hold off; title(magnitude) xlabel(frequency) ylabel(magnitude) subplot(222) plot(w,phaY) hold on; plot(w,angle(H) hold off; title(phase) xlabel(frequency) ylabel(phase)Problem 2:(a)1 (Z-P plane&impulse response&DTFT) b=1 -0.855; a=1 -1.71 0.9025; pul=1 zeros(1,59); subplot(221) zplane(b,a) title(zero-pole plane) subplot(222) h1=impz(b,a,60); stem(h1) title(impulse response) subplot(223) H,w=freqz(b,a,whole); plot(w,abs(H) title(|H(w)|) xlabel(w) subplot(224) plot(w,angle(H) title(angle H(w) xlabel(w)2 (DFT) b=1 -0.855; a=1 -1.71 0.9025; L=100; NFFT=2nextpow2(L); N=10; h1=impz(b,a,N); H,w=freqz(b,a,NFFT); y=fft(h1,NFFT); magY=abs(y); phaY=angle(y); subplot(221) plot(w,magY) title(magnitude) xlabel(frequency) ylabel(magnitude) subplot(222) plot(w,phaY) title(phase) xlabel(frequency) ylabel(phase)3 (DFT compares to DTFT) b=1 -0.855; a=1 -1.71 0.9025; L=100; NFFT=2nextpow2(L); N=10; h1=impz(b,a,N); H,w=freqz(b,a,NFFT,whole); y=fft(h1,NFFT); magY=abs(y); phaY=angle(y); subplot(221) plot(w,magY) hold on; plot(w,abs(H) hold off; title(magnitude) xlabel(frequency) ylabel(magnitude) subplot(222) plot(w,phaY) hold on; plot(w,angle(H) hold off; title(phase) xlabel(frequency) ylabel(phase)(b)1 (Z-P plane&impulse response&DTFT) b=1 -0.665; a=1 -1.33 0.9025; pul=1 zeros(1,59); subplot(221) zplane(b,a) title(zero-pole plane) subplot(222) h1=impz(b,a,60); stem(h1) title(impulse response) subplot(223) H,w=freqz(b,a,whole); plot(w,abs(H) title(|H(w)|) xlabel(w) subplot(224) plot(w,angle(H) title(angle H(w) xlabel(w)2 (DFT) b=1 -0.665; a=1 -1.33 0.9025; L=100; NFFT=2nextpow2(L); N=10; h1=impz(b,a,N); H,w=freqz(b,a,NFFT); y=fft(h1,NFFT); magY=abs(y); phaY=angle(y); subplot(221) plot(w,magY) title(magnitude) xlabel(frequency) ylabel(magnitude) subplot(222) plot(w,phaY) title(phase) xlabel(frequency) ylabel(phase)3 (DFT compares to DTFT) b=1 -0.665; a=1 -1.33 0.9025; L=100; NFFT=2nextpow2(L); N=50; h1=impz(b,a,N); H,w=freqz(b,a,NFFT,whole); y=fft(h1,NFFT); magY=abs(y); phaY=angle(y); subplot(221) plot(w,magY) hold on; plot(w,abs(H) hold off; title(magnitude) xlabel(frequency) ylabel(magnitude) subplot(222) plot(w,phaY) hold on; plot(w,angle(H) hold off; title(phase) xlabel(frequency) ylabel(phase)(c)1 (Z-P plane&impulse response&DTFT) b=1 -0.891; a=1 -1.782 0.9801; pul=1 zeros(1,59); subplot(221) zplane(b,a) title(zero-pole plane) subplot(222) h1=impz(b,a,60); stem(h1) title(impulse response) subplot(223) H,w=freqz(b,a,whole); plot(w,abs(H) title(|H(w)|) xlabel(w) subplot(224) plot(w,angle(H) title(angle H(w) xlabel(w)2 (DFT) b=1 -
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上饶预制化粪池施工方案
- 卸车指挥工设备维护与保养考核试卷及答案
- 中药灸熨剂工三级安全教育(班组级)考核试卷及答案
- 药械科不良安全事件培训课件
- 信息传播策略优化分析报告
- 2025版司法局《涉嫌抢劫罪的法律意见书》(空白模板)
- 精密过滤器施工方案
- 门面装饰工程施工方案
- 咨询公司项目规划方案
- 城市建筑纸浆配送方案设计
- 脊柱骨科课件教学
- 物业服务培训课件大纲
- 2025至2030中国原果浆行业项目调研及市场前景预测评估报告
- 家庭教育指导行业2025年市场规模与增长趋势报告
- 商场装修合同
- 2025年版住宅房屋租赁合同范本下载
- 2-5跨学科实践制作隔音房间模型八年级物理学案人教版
- 2025年秋季学期“1530”安全教育记录表
- 燃气轮机介绍课件
- 最新青岛版(六年制)四年级上册数学《 1.5 求近似数》PPT课件
- 城市夜景照明设计规范JGJ T 163-2008
评论
0/150
提交评论