




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
成都理工大学实验一、PCM编译码实验实验步骤1. 准备工作:加电后,将交换模块中的跳线开关KQ01置于左端PCM编码位置,此时MC145540工作在PCM编码状态。 2. PCM串行接口时序观察(1) 输出时钟和帧同步时隙信号观测:用示波器同时观测抽样时钟信号(TP504)和输出时钟信号(TP503),观测时以TP504做同步。分析和掌握PCM编码抽样时钟信号与输出时钟的对应关系(同步沿、脉冲宽度等)。(2) 抽样时钟信号与PCM编码数据测量:用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。3. PCM编码器(1) 方法一:(A) 准备:将跳线开关K501设置在测试位置,跳线开关K001置于右端选择外部信号,用函数信号发生器产生一个频率为1000Hz、电平为2Vp-p的正弦波测试信号送入信号测试端口J005和J006(地)。(B) 用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。分析为什么采用一般的示波器不能进行有效的观察。(2) 方法二:(A) 准备:将输入信号选择开关K501设置在测试位置,将交换模块内测试信号选择开关K001设置在内部测试信号(左端)。此时由该模块产生一个1KHz的测试信号,送入PCM编码器。(B) 用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以内部测试信号(TP501)做同步(注意:需三通道观察)。分析和掌握PCM编码输出数据与帧同步时隙信号、发送时钟的对应关系。4. PCM译码器(1) 准备:跳线开关K501设置在测试位置、K504设置在正常位置,K001置于右端选择外部信号。此时将PCM输出编码数据直接送入本地译码器,构成自环。用函数信号发生器产生一个频率为1000Hz、电平为2Vp-p的正弦波测试信号送入信号测试端口J005和J006(地)。(2) PCM译码器输出模拟信号观测:用示波器同时观测解码器输出信号端(TP506)和编码器输入信号端口(TP501),观测信号时以TP501做同步。定性的观测解码信号与输入信号的关系:质量、电平、延时。5. PCM频率响应测量:将测试信号电平固定在2Vp-p,调整测试信号频率,定性的观测解码恢复出的模拟信号电平。观测输出信号信电平相对变化随输入信号频率变化的相对关系。输入频率(HZ)200500800100020003000340036004000输出幅度(V)1.962.162.162.202.202.161.961.080.20输入幅度(V)0.20.51.522.5345输出幅度(V)0.360.601.642.162.643.123.363.64实验结果见彩印图片实验三、基带传输系统实验实验内容:1. =0升余弦滤波成形信号观察(1) 准备工作:将数字调制解调模块中的KG01选择在下端测试数据位置,KG02设置成3级m序状态,数据时钟选择开关置于1-2状态,KG04置于=0升余弦滤波状态。KP01置于1-2状态。(2) 以发送时钟做同步,观察发送信号的波形。观察多零点抖动与眼皮厚度。(3) 用KG02输入不同的测试数据,观察TPi03的信号要从信号。总结信号特征并解释原因。2. =1,=0.4,=0.4开根号升余弦滤波的眼图观察(1) 准备工作:除KG04外,其余同步骤1.KG04设置成=1,=0.4,=0.4开根号升余弦滤波状态。(2) 以发送时钟做同步,观察发送信号的波形。观察多零点抖动与眼皮厚度,记录TPM02,TPM03波形。(3) 用KG02输入不同的测试数据,观察TPi03的信号。记录TPM02,TPM03波形,总结信号的特征并解释原因。眼图的观察方法:用一个示波器跨越在抽样判决器的输入端,然后调整示波器水平周期使其接收码元的周期同步3. 根据实验指导书上的要求连接好导线。4. 然后调节不同的电压和电流观察波形。5.观察过以后,调节频道和斜率等等各种不同的细节,然后调节示波器的噪声。最终能得出来以下的眼图结果。 (1)最佳抽样时刻是“眼睛”张开最大的时刻。 (2)定时误差灵敏度是眼图斜边的斜率。斜率越大,对于定时误差越敏感。 (3)图的阴影区的垂直高度表示抽样时刻上信号受噪声干扰的畸变程度。 (4)图中央的横轴位置对应判决门限。 (5)抽样时刻时,上下两阴影区的间隔距离之半为噪声容限,若噪声瞬时值超过它就可能发生错判。 (6)图中倾斜阴影带与横轴相交的区间表示了接收波形零点位置的变化范围,即过零点畸变,它对于利用信号零交点的平均位置来提取定时信息的接收系统有很大的影响。实验四AMI/HDB3和CMI码型变换实验实验步骤:1. AMI 码编码规则验证(1) 首先将输入信号选择跳线开关KD01 设置在M 位置(右端)、单/双极性码输出选择开关设置KD02 设置在2_3 位置(右端)、AMI/HDB3 编码开关KD03 设置在AMI 位置(右端),使该模块工作在AMI 码方式。(2) 将CMI编码模块内的M序列类型选择跳线开关KX02 产生7位周期m序列,用示波器同时观测输入数据TPD01 和AMI 输出双极性编码数据TPD05 波形及单极性编码数据TPD08 波形,观测时用TPD01 同步。分析观测输入数据与输出数据关系是否满足AMI 编码关系,画下一个M 序列周期的测试波形。 7位周期序列TPD01(下)与AMI输出的双极性编码数据TPD05(上) 7位周期序列TPD01(下)与AMI输出的单极性编码数据TPD08(上) (3) 将输入数据选择跳线开关KD01拨除,将示波器探头从TPD01测试点移去,使输入数据端口悬空产生全1码。重复上述测试步骤,记录测试结果。(4) 将输入数据选择跳线开关KD01拨除,将示波器探头接入TPD01测试点上,使输入数据端口不悬空产生全0码。重复上述测试步骤,记录测试结果。2. AMI 码译码和时延测量(1) 将输入数据选择跳线开关KD01 设置在M 位置(右端);将CMI 编码模块内的M 序列类型选择跳线开关KX02 产生15 位周期m 序列;将锁相环模块内输入信号选择跳线开关KP02 设置在HDB3 位置(左端)。(2) 用示波器同时观测输入数据TPD01 和AMI 译码 输出数据TPD07 波形,观测时用TPD01 同步。观测AMI 译码输出数据是否满正确,画下测试波形。问:AMI编码和译码的的数据时延是多少?(3) 将CMI编码模块内的M序列类型选择跳线开关KX02 产生7 位周期m 序列。重复上译步骤测量,记录测试结果。问:此时AMI 编码和译码的的数据时延是多少?思考:数据延时量测量因考虑到什么因数?3. AMI 编码信号中同步时钟分量定性观测(1) 将输入数据选择跳线开关KD01 设置在M 位置(右端),将CMI 编码模块内的M 序列类型选择跳线开关KX02 产生15 位周期m 序列;将锁相环模块内输入信号选择跳线开关KP02 设置在HDB3 位置(左端)。(2) 将极性码输出选择跳线开关KD02 设置在2_3 位置(右端)产生单极性码输出,用示波器测量模拟锁相环模块TPP01 波形;然后将跳线开关KD02 设置在1_2 位置(左端)产生双极性码输出,观测TPP01 波形变化。通过测量结果回答: AMI编码信号转换为双极性码或单极性码后,那一种码型时钟分量更丰富,为什么?答:单极性码能量丰富接收机应将接收到的信号转换成何种码型才有利于收端位定时电路对接收时钟进行提取。(3) 将CMI编码模块内的M序列类型选择跳线开关KX02 产生全“1”码,重复上述测试步骤,记录分析测试结果。(4) 将CMI编码模块内的M序列类型选择跳线开关KX02 产生全“0”码,重复上述测试步骤,记录分析测试结果。思考:具有长连0 码格式的数据在AMI 编译码系统中传输会带来什么问题,如何解决?4.AMI 译码位定时恢复测量(1) 将输入数据选择跳线开关KD01 设置在M 位置(右端),将CMI 编码模块内的M 序列类型选择跳线开关KX02 设置在15位序列状态位置,将锁相环模块内输入信号选择跳线开关KP02 设置在HDB3 位置(左端)。(2) 先将跳线开关KD02 设置在2_3 位置(右端)单极性码输出,用示波器测量同时观测发送时钟测试点TPD02 和接收时钟测试点TPD06 波形,测量时用TPD02同步。此时两收发时钟应同步。然后,再将跳线开关KD02 设置在1_2 位置(左端)单极性码输出,观测TPD02 和TPD06 波形。记录和分析测量结果。(3) 将跳线开关KD02 设置回2_3 位置(右端)单极性码输出,将CMI编码模块内的M序列类型选择跳线开关KX02 设置为全1码或全0码。重复上述测试步骤,记录分析测试结果。实验五、FSK调制解调实验实验步骤:1. FSK信号传号频率与空号频率的测量(1) 准备工作:将选择开关KG03置于右端,将FSK调制解调模块中的跳线开关KE01,KE02均置于右端,KG01放置在测试位置(2) TPE02是已调FSK波形,通过开关KG02选择全1码输入数据信号,观测TPE02的信号波形,测量其基带信号周期和频率-传号频率(3) 通过开关KG02选择全0码输入数据信号,观测TPE02信号波形,测量其基带信号周期和频率-空号频率。将测量结果与1码比较2. FSK调制基带信号观测(1) 准备:同实验步骤1(2) 通过开关KG02选择0/1码输入数据信号,TPM02是发送数据信号,TPE02是已调FSK波形。并以TPM02作为同步信号,观测TPM02与TPE02点波形应有明确的信号对应关系3. 锁相环特性观察(1) 准备:与步骤1不同之处是将KE02置于1-2端,这样接收的信号来源于外部测试信号(2) 用信号源加入TTl方波测试信号。通过:J007,J006加入测试信号,改变测试信号的频:从5KHZ30KHZ进行变化,观察PLL鉴相输出TPE04的信号波形,在观察TPE06的波形。4. 解调数据信号观察(1) 准备:同步骤1(2) 测量FSK解调数据信号测试点TPE06的波形,观察时仍用发送数据作同步,比较两者的对应关系。(3) 通过开关KG02选择其它码,测量TPE06信号波形,观察解调数据是否与发送数据保持一致5. 不同参数的FSK基带信号观测:调节电位器WE01,WE02,分别调整频率间隔和中心频率,观察基带信号TPE02随调整的变化情况。6. 不同频率下的解调信号观测:通过开关KG03选择码元速率在左端32K位置,观测对解调输出有什么影响,为什么? 1FSK基带信号观测(1)TPi03是基带FSK波形(D/A模块内)。通过菜单选择为1码输入数据信号,观测TPi03信号波形,测量其基带信号周期。(2)通过菜单选择为0码输入数据信号,观测TPi03信号波形,测量其基带信号周期。将测量结果与1码比较。2发端同相支路和正交支路信号时域波形观测TPi03和TPi04分别是基带FSK输出信号的同相支路和正交支路信号。测量两信号的时域信号波形时将输入全1码(或全0码),测量其两信号是否满足正交关系。思考:产生两个正交信号去调制的目的。3发端同相支路和正交支路信号的李沙育(x-y)波形观测将示波器设置在(x-y)方式,可从相平面上观察TPi03和TPi04的正交性,其李沙育应为一个圆。通过菜单选择在不同的输入码型下进行测量。4连续相位FSK调制基带信号观测(1)TPM02是发送数据信号(DSP+FPGA模块左下脚),TPi03是基带FSK波形。测量时,通过菜单选择为0/1码输入数据信号,并以TPM02作为同步信号。观测TPM02与TPi03点波形应有明确的信号对应关系。并且,在码元的切换点发送波形的相位连续。思考:非连续相位FSK调制在码元切换点的相位是如何的。(2)通过菜单选择为特殊序列码输入数据信号,重复上述测量步骤。记录测量结果。5FSK调制中频信号波形观测在FSK正交调制方式中,必须采用FSK的同相支路与正交支路信号;不然如果只采一路同相FSK信号进行调制,会产生两个FSK频谱信号,这需在后面采用较复杂的中频窄带滤波器,FSK的频谱调制过程如图所示:(1)调制模块测试点TPK03为FSK调制中频信号观测点。测量时,通过菜单选择为0/1码输入数据信号,并以TPM02作为同步信号。观测TPM02与TPK03点波形应有明确的信号对应关系。(不很明显,大致观察)(2)将正交调制输入信号中的一路基带调制信号断开(D/A模块内的跳线器Ki01或Ki02),重复上述测量步骤。观测信号波形的变化,分析变化原因。(二):FSK解调1解调基带FSK信号观测首先用中频电缆连结KO02和JL02,建立中频自环(自发自收)。测量FSK解调基带信号测试点TPJ05的波形,观测时仍用发送数据(TPM02)作同步,比较其两者的对应关系。通过菜单选择为0/1码(或特殊码)输入数据信号,观测TPJ05信号波形。根据观测结果,分析解调端的基带信号与发送端基带波形(TPi03)不同的原因?2解调基带信号的李沙育(x-y)波形观测将示波器设置在(x-y)方式,从相平面上观察TPJ05和TPJ06的李沙育波形。(1)通过菜单选择为1码(或0码)输入数据信号,仔细观测其李沙育信号波形。(2)通过菜单选择为0/1码(或特殊码)输入数据信号,仔细观测李沙育信号波形。根据观测结果,思考接收端为何与发送端李沙育波形不同的原因? 将跳线开关KL01设置在2_3位置,调整电位器WL01(改变接收本地载频即改变收发频差),继续观察。分析波形的变化与什么因素有关。3接收位同步信号相位抖动观测用发送时钟TPM01(DSP+FPGA模块左下脚)信号作同步,选择不同的测试码序列测量接收时钟TPMZ07(DSP芯片左端)的抖动情况。思考:为什么在全0或全1码下观察不到位定时的抖动?输入测试数据为全1码时:输入测试数据为全0码时:输入测试数据为0/1码时:输入测试数据为特殊码时:4抽样判决点波形观测将跳线开关KL01设置在2_3位置,调整电位器WL01,以改变接收本地载频(即改变收发频差),观察抽样判决点TPN04(测试模块内)波形的变化。在观察时,示波器的扫描时间取约2ms级较为合适,观察效果较好。具有以下的波形:理想情况下,正交相乘经低通滤波之后在判决器之前的变量应取两个值:A或A。而实际情况,的输出如图2.1.6所示,原因有以下几个方面:(1)位定时抖动,由于位定时的抖动,使前后的码元产生了码间串扰串(ISI),从而引起判决器之前的波形抖动;(2)剩余频差:由于收发频率不同,当这种差别较大时,会引起判决器之前的波形抖动;(3)A/D量化时的直流漂移:由于A/D在量化时存在直流漂移,引起判决器之前的波形抖动;(4)线路噪声:当接收支路存在噪声时,引起判决器之前的波形幅度抖动;如图所示FSK解调器抽样判决点的波形输入测试数据为全1码时:输入测试数据为全0码时:输入测试数据为0/1码时:输入测试数据为特殊码时:5解调器位定时恢复与最佳抽样判决点波形观测TPMZ07为接收端DSP调整之后的最佳抽样时刻。选择输入测试数据为m序列,用示波器同时观察TPMZ07(观察时以此信号作同步)和观察抽样判决点TPN04波形(抽样判决点信号)的之间的相位关系。6位定时锁定和位定时调整观测TPMZ07为接收端恢复时钟,它与发端时钟(TPM01)具有明确的相位关系。(1)在输入测试数据为m序列时,用示波器同时观察TPM01(观察时以此信号作同步)和TPMZ07(收端最佳判决时刻)之间的相位关系。(2)不断按确认键,此时仅对DSP位定时环路初始化,让环路重新调整锁定,观察TPMZ07的调整过程和锁定后的相位关系。(3)在测试数据为全1或全0码时重复该实验,并解释原因。断开JL02接收中频环路,在没有接收信号的情况下重复上述步骤实验,观测TPM01和TPMZ07之间的相位关系,并解释测量结果的原因。7定性观察在各种输入码字下FSK的输入/输出数据测试点TPM02是调制输入数据,TPM04是解调输出数据。通过菜单选择为不同码型输入数据信号,观测输出数据信号是否正确。观测时,用TPM02点信号同步。输入测试数据为全1码时:输入测试数据为全0码时: 输入测试数据为0/1码时: 输入测试数据为特殊码时: 输入测试数据为m序列时: 学生实验心得经过这次的通信原理实验课的学习,让我收获多多。但在这中间,我也发现了我存在的很多不足。我的动手能力还不够强,当有些实验需要很强的动手能力时我还不能从容应对;我的探索方式还有待改善,当面对一些复杂的实验时我还不能很快很好的完成;我的数据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- qt考试试题及答案
- pcb期末考试及答案
- 光学科技解锁AI时代新视界 智能眼镜光学科技服务行业白皮书
- 高级接警调度员培训课件
- 1.3一元二次方程的根与系数的关系 分层练习(含答案)数学苏科版九年级上册
- 高空坠落安全知识培训课件记录
- 高熵合金课件
- 电焊工证件培训知识讲解课件
- G9a-IN-3-生命科学试剂-MCE
- 5-AF594-tyramide-生命科学试剂-MCE
- 1.2地球与地球仪(第1课时)课件七年级地理上册人教版
- 《幼儿园保育教育质量评估指南》理论考试试卷(附答案)
- 外观专利培训课件
- DB32∕T 4787-2024 城镇户外广告和店招标牌设施设置技术标准
- 仓储主管考试试卷及答案
- 地理探索之旅:初中研学旅行方案策划
- 妇联开展宣讲活动方案
- 母婴保健培训课件学习
- 2025年高考上海卷数学真题答案
- 辽宁省沈阳市铁路实验中学2024-2025学年高二上学期10月月考生物试卷(原卷版)
- 电休克疗法的麻醉管理
评论
0/150
提交评论